Skip to main content

Application of Membrane Mimetic Chemistry to Fossil Fuel Conversion and Environmental Engineering

  • Chapter
Advances in the Applications of Membrane-Mimetic Chemistry

Abstract

Some recent developments of using the membrane-mimetic chemistry concept for dealing with energy conversion and environmental energy are reviewed. The heading are I. The regular framework formation in solutions containing dissolved silicates, II. In situ surfactant from petroleum and vesicles, Ill. Asphaltene peptization and conversions, IV. Reverse micelle multiphase biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Fendler. “Membrane Mimetic Chemistry,” Wiley, New York (1982).

    Google Scholar 

  2. J.H. Fendler and E.J. Fendler. “Catalysis in Micellar and Macromolecular Systems,” Academic Press, New York (1975).

    Google Scholar 

  3. J.D. Barrington and D.S. Clark. “Biocatalysis and Biomimetics,” ACS Symp. Ser. 392, Washington D.C. (1989).

    Book  Google Scholar 

  4. M.D. Beduarski, H.K. Chenault, E.S. Simon and G.M. Whitesides, J. Am. Chem. Soc. 109:1283–1285 (1987).

    Article  Google Scholar 

  5. Korean Institute for Industry Research, Private Communication (1986).

    Google Scholar 

  6. W. Eitel, Silicate structures, in: “Silicate Science,” vol.1, Academic Press, New York (1964).

    Google Scholar 

  7. F. Liebau, Classification of silicates, in: “Reviews in Mineralogy,” vol.5, P.H. Ribbe, ed., Orthosilicates Mineralogical Society of America, Chelsea, MI, pp. 1–24 (1982).

    Google Scholar 

  8. R.K. Harris, C.T.G. Knight and W.E. Hull, NMR Studies of the chemical structure of silicates in solution, in: “Soluble Silicates,” J.S. Falcone, Jr., ed., ACS Symposium Ser. 194:79–94 (1982).

    Chapter  Google Scholar 

  9. R.K. Harris, C.T.G. Knight and W.E. Hull, Nature of species present in an aqueous solution of potassium silicate, J. Am. Chem. Soc. 103:1577–1578 (1981).

    Article  CAS  Google Scholar 

  10. R.K. Harris, J. Jones, C.T.G. Knight and D. Dawson, Silicon-29 NMR studies of aqueous silicate solutions, part El isotopic enrichment, J. Mol. Structure. 69:95–103 (1980).

    Article  CAS  Google Scholar 

  11. P.A. Farmanian, N. Davis, J.T. Kwan, R.M. Weinbrandt and T.F. Yen, Participation of selective native, petroleum fraction in alkaline-water flooding, in: “Chemistry of Oil Recovery,” R.T. Johansen and R.L Berg, eds., ACS Symposium Ser. 91:103–115 (1979).

    Chapter  Google Scholar 

  12. T.F. Yen, R.J. Hwang, M.K. Chan and P.F. Lin, Characterization of alkaline sensitive fraction of california crudes, in: “Proceedings, 5th Annual DOE Symposium on Enhanced Oil and Gas Recovery and Improved Drilling Technology,” vol. 1, 1–14 (1979).

    Google Scholar 

  13. T.F. Yen, M. Chan and LK. Jang, Some applications derived from petroleum component properties for improved waterflooding studies, in: “Proceedings of 1980 Heavy Oil Conference,” U.S. DOE, NTIS, CONF 800350 413–426 (1980). Also T.F. Yen, M. Chan and LK. Jang, Some useful concepts derived from petroleum component properties for improved waterflooding studies, in: “Enhanced Oil Recovery - Chemical Flooding,” vol. 2, F-28/10, DOE/BETC/lc-80/3 (1980).

    Google Scholar 

  14. M. Chan, M.M. Sharma and T.F. Yen, Generation of surface active acids in crude oil for caustic flooding enhanced oil recovery, Ind. Eng. Chem. Process Design and Dev. 21:580–583 (1982).

    Article  CAS  Google Scholar 

  15. LK. Jang, M.M. Sharma, Y.I. Chang, M. Chan and T.F. Yen, Correlation of petroleum component properties for caustic flooding, in: “Interfacial Phenomena in Enhanced Oil Recovery,” D.T. Wasan and A.C. Payatakes, eds., AIChE Symposium Series 212:97–104, vol. 78 (1982).

    Google Scholar 

  16. J.F. Kuo, KM. Sadeghi, LK. Jang, M.A. Sadeghi and T.F. Yen, Enhancement of bitumen separation from tar sand by radicals in ultrasonic irradiation,App/. Phys. Comm. 6(2):205–212 (1986).

    CAS  Google Scholar 

  17. M.A. Sadeghi, LK. Jang, J.F. Kuo, KM. Sadeghi, R.B. Palmer and T.F. Yen, A new extraction technology for tar sand production, in: “The 3rd UNITAR/UNDP International Conference on Heavy Crude and Tar Sands,” AOSTRA, Edmonton, Alberta, pp. 739–747 (1988).

    Google Scholar 

  18. M.A. Sadeghi, KM. Sadeghi, J.F. Kuo, LK. Jang and T.F. Yen. “Treatment of Carbonaceous Materials,” U.S. Patent 4,765,885, 22 claims, August 23, 1988.

    Google Scholar 

  19. KM. Sadeghi, MA Sadeghi, G.V. Chilingarian and T.F. Yen, Extraction of bitumen from bituminous sands using ultrasound and sodium silicate, Khimiya i Tekhnologiya Topliv i Masel/Chemistry and Technology of Fuels and Oils, 8:24–28, in Russian (1988).

    Google Scholar 

  20. KM. Sadeghi, M.A. Sadeghi, G.V. Chilingar and T.F. Yen, Developing a new method for bitumen recovery from bituminous sands using ultrasound and sodium silicate, Geologiva Neft i Gaza (Moscow), 8:53–57, in Russian (1988).

    Google Scholar 

  21. KM. Sadeghi, M.A. Sadeghi, J.F. Kuo, LK. Jang and T.F. Yen, A new tar sand recovery process: Recovery methods and characterization of products, Energy Sources 12(2):147–160 (1990).

    Article  CAS  Google Scholar 

  22. KM. Sadeghi, M.A. Sadeghi, M. Blazquez and T.F. Yen, Treatment of tar sand by cavitation induced sonication, Ana. Quiet. (Madrid), 86(2):175–181 (1990).

    Google Scholar 

  23. M.A. Sadeghi, KM. Sadeghi, J.F. Kuo, LK. Jang and T.F. Yen, “Sonication Method and Reagent for Treatment of Carbonaceous Materials,” U.S. Patent 4,841,131, 38 claims, Jan. 2, 1990.

    Google Scholar 

  24. M.A. Sadeghi, KM. Sadeghi, J.F. Kuo, LK. Jang and T.F. Yen, “Treatment of Carbonaceous Materials,” U.S. Patent 5,017,281 (to Enersource, Inc.), 6 claims, May 21, 1991.

    Google Scholar 

  25. M.A. Sadeghi, KM. Sadeghi, J.F. Kuo, LK. Jang and T.F. Yen, “Treatment of Carbonaceous Materials,” Canadian Patent 1,283,879, 47 claims, May 7, 1991.

    Google Scholar 

  26. KM. Sadeghi, MA Sadeghi and T.F. Yen, A novel extraction of tar sands by sonication with the aid of in-situ surfactants, Energy and Fuels 4(5):604–608 (1990).

    Article  CAS  Google Scholar 

  27. KM. Sadeghi, MA. Sadeghi, J.F. Kuo, LK. Jang, J.R. Lin and T.F. Yen, A New Process for Tar Sand Recovery, Chem. Eng. Comm. 117:191–203 (1992).

    Article  CAS  Google Scholar 

  28. AS. Lee, X.W. Xu and T.F. Yen, Upgrading of heavy crude at low-temperature and ambient atmosphere, in: “Proceedings, The Fourth UNITAR/UNDP International Conference on Heavy Crude and Tar Sand, Vol. 5: Extraction, Upgrading, Transportation”, 109–116, 145146, Edmonton, Alberta (1989).

    Google Scholar 

  29. T. F. Yen and J. R. Lin, Upgrading of heavy oil via interfacial hydrogenation under cavitation conditions, “Heavy Crude and Tar Sands - Hydrocarbons for the 21st Century,” Vol. 4, Upgrading, Government and Environment, 75–81, Vol 5, Discussions, 174–175, 213, UNITAR, New York (1991).

    Google Scholar 

  30. J.R. Lin and T.F. Yen, An upgrading process through cavitation and surfactant, Energy and Fuels, 7(1):111–118 (1993).

    Article  CAS  Google Scholar 

  31. KM. Sadeghi, M.A. Sadeghi and T.F. Yen, Uses of generated surfactants from a new tar sand process for extracting hydrocarbons from natural and man-made materials, “Proceedings, 1989 Eastern Oil Shale Symposium,” pp. 18–25, University of Kentucky (1989).

    Google Scholar 

  32. KM. Sadeghi, M.A. Sadeghi, LK. Jang, G.V. Chilingarian and T.F. Yen, A new bitumen recovery technology and its potential application to remediation of oil spills, J. Petrol Sci. Eng. 8(2):105–117 (1992).

    Article  CAS  Google Scholar 

  33. J. R. Chen, X. W. Xu, A. S. Lee and T. F. Yen, A feasibility study of dechlorination of chloroform in water by ultrasound in the presence of hydrogen peroxide, Env. Technology, 11:829–836 (1990).

    Article  CAS  Google Scholar 

  34. T. F. Yen and J. M. Moldowan, “Geochemical Biomarkers,” a monograph, Harwood Academic Publishers, Chur, Switzerland (1988).

    Google Scholar 

  35. C. S. Wen and T. F. Yen, Electrolytic oxidation and reduction of oil shale, in: “Science and Technology of Oil Shale,” pp. 83–102, Ann Arbor Science Pub. (1976).

    Google Scholar 

  36. T. F. Yen and C. S. Wen, J.I.S. Tang, J. T. Kwan, D. K. Young and E. Chow, Structural characterization of bitumen and kerogen from devonian shale, “1st Eastern Gas Shales Symposium,” 414–430, Preprints, ERDA (1977); also “Proceedings, First Gas-Shale Symposium,” 572–588, Technical Information Center, Springfield, VA (1978).

    Google Scholar 

  37. M.A. Sadeghi, KM. Sadeghi, D. Momeni and T.F. Yen, Microscopic studies of surfactant vesicles formed in tar sand recovery, “Oil Field Chemistry: Enhanced Recovery and Production Stimulation,” ACS Symp. Ser. No. 396, Chapter 21 393–409 (1989).

    Google Scholar 

  38. T. F. Yen, J. K. Park, K.I. Lee and Y. Q. Li, Fate of surfactant vesicles surviving from thermophilic, halotolerant, spore forming, clostridium thermohydrosulfuricum, “Proceedings of the 1990 International Conference on Microbial Enhanced Oil Recovery,” 297–309, Elsevier, Amsterdam (1991).

    Google Scholar 

  39. H. Lian, J.R. Lin and T.F. Yen, Peptization studies of asphaltene and solubility parameter spectra, Fuel (London), 73(3):423–428 (1994).

    CAS  Google Scholar 

  40. J.H. Fendler, Microemulsions micelles, and vesicles for membrane mimetic photochemistry, J. Phy. Chem. 84:1485 (1980).

    Article  CAS  Google Scholar 

  41. E.B. Flint and KS. Suslick, The temperature of cavitation, Science. 253:2397–2399 (1991).

    Article  Google Scholar 

  42. LJ. Brigg, Limiting negative pressure of water, J. App. Phy. 21:721–722 (1950).

    Article  Google Scholar 

  43. K.I. Lee and T.F. Yen, Coal desulfurization through reverse micelle biocatalysis process,Am. Chem. Soc. Fuel Chem. Preprints, 33(4):573–579 (1988).

    CAS  Google Scholar 

  44. K.I. Lee, M.L Blazquez and T.F. Yen, A new filamentous bacteria for coal desulfurization, in: “Bioprocessing and Biotreatment of Coal,” 729–736, D. Wise, ed., Marcel Dekker, (1990).

    Google Scholar 

  45. K.I. Lee and T.F. Yen, Sulfur removal from coal through multiphase media containing biocatalysts, J. Chem. Tech. Biotech. 48:71–79 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yen, T.F., Chen, J., Sadeghi, K.M. (1994). Application of Membrane Mimetic Chemistry to Fossil Fuel Conversion and Environmental Engineering. In: Yen, T.F., Gilbert, R.D., Fendler, J.H. (eds) Advances in the Applications of Membrane-Mimetic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2580-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2580-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6103-9

  • Online ISBN: 978-1-4615-2580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics