Skip to main content

Applications of Bacteriorhodopsin in Membrane Mimetic Chemistry

  • Chapter
Advances in the Applications of Membrane-Mimetic Chemistry
  • 147 Accesses

Abstract

The chemistry of the photoreceptors of higher animals is a topic that reaches back more than forty years. By 1970, the photoreceptors of more than four hundred species of animals had been studied. All these species have in their visual pigments a common chromophore, retinal, connected to the protein opsins through a Schiff base bond. This protein complex, called rhodopsin, with its associated lipids makes up the photosensitive membrane in photoreceptor cells.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.J.A. Dartnall (ed.). “Photochemistry of Vision, Handbook of Sensory Physiology VII/1,” Springer, Berlin (1972).

    Google Scholar 

  2. H. Langer (ed.) “Biochemistry and Physiology of Visual Pigments,” Springer, Berlin (1973).

    Google Scholar 

  3. W. Stoeckenius and W.H. Kunau, Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes, J. Cell Biol., 38:337–357 (1968).

    Article  Google Scholar 

  4. D. Osterhelt and W. Stoeckenius, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biology, 233:149–151 (1971).

    Google Scholar 

  5. F. Siebert, Retinal proteins, in: “Photochromism Molecules and Systems H. Durrand and H. Bouas-Laurent, Eds., Elsevier, New York (1990).

    Google Scholar 

  6. R.R. Birge, Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin, Biochim. Biophys. Acta, 1016:293–327 (1990).

    CAS  Google Scholar 

  7. T.G. Ebrey, H. Frauenfelder, B. Honig, and K. Nakanishi, “Biophysical Studies of Retinal Proteins,” University of Illinois Press, Urbana (1987).

    Google Scholar 

  8. W. Stoeckenius, R.H. Lozier, and R.A. Bogomolni, Bacteriorhodopsin and the purple membrane of Halobacteria, Biochim. Biophy. Acta, 505:215–278 (1979).

    CAS  Google Scholar 

  9. W. Stoeckenius and R.A. Bogomolni, Bacteriorhodopsin and related pigments of halobacteria, Ann. Rev. Biochem., 52:587–616 (1982).

    Article  Google Scholar 

  10. Yu A. Ovchinnikov, N.G. Abdulaev, M. Yu Feigina, A.V. Kiselev, and N.A. Lobanov, The structural basis of the functioning of bacteriorhodopsin: An overview, FEBS Lett, 100:219–224 (1979).

    Article  Google Scholar 

  11. H.G. Khorana, G.E. Gerber, W.C. Herlihy, C.P. Gray, R.J. Anderegg, K. Nihei, and K. Biemann, Amino acid sequence of bacteriorhodopsin, Proc. Natl. Acad. Sci., U.S.A. 76:5046–5050 (1979).

    Article  CAS  Google Scholar 

  12. R.J. Dunn, N.R. Hackett, K.S. Huang, S. Jones, H.G. Khorana, D.S. Lee, M.J. Liao, K.M. Lo, J.J. McCoy, S. Noguchi, R. Radhakrishnan, and U.L. RajBhandry, Studies on the light-transducing pigment bacteriorhodopsin, Cold Spring Harbor Symp. Quant. Biol. 48:853–862 (1983).

    Article  CAS  Google Scholar 

  13. R. Henderson, J.M. Baldwin, T.A. Ceska, F. Zemlin, E. Beckmann, and K.H. Downing, Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol. 213:899–929 (1990).

    Article  CAS  Google Scholar 

  14. J.M. Baldwin and R. Henderson. Measurement and evaluation of electron diffraction patterns from two-dimensional crystals, Ultramicroscopy 14:319–336 (1984).

    Article  CAS  Google Scholar 

  15. J.M. Baldwin, R. Henderson, E. Beckman, and F. Zemlin, Images of purple membrane at 2.8 Å resolution obtained by cyro-electron microscopy. J. Mol. Biol. 202:585–591 (1988).

    Article  CAS  Google Scholar 

  16. R. Henderson, J.M. Baldwin, K.H. Downing, J. Lepault, F. Zemlin, Structure of purple membrane from Halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution, Ultramicroscopy 19:147178 (1986).

    Google Scholar 

  17. G. Souvignier and K. Gerwert, Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy. Biophys. J. 63:1393–1405 (1992).

    Article  CAS  Google Scholar 

  18. S.J. Doig, P.J. Reid, and R.A. Mathies, Picosecond time-resolved resonance Raman spectroscopy of Bacteriorhodopsin: Structure and kinetics of the J.K. and KL intermediates, SPIE Vol. 1432, Biomolecular Spectroscopy II, 184–196 (1990).

    Google Scholar 

  19. G. Varo and J.K. Lanyi, Pathways of the rise and decay of the M photointermediate(s) of bacteriorhodopsin, Biochemistry 29:2241–2250 (1990).

    Article  CAS  Google Scholar 

  20. T. Kobayashi, M. Terauchi, T. Kouyama, M. Yoshizawa, and M. Taiji, Femto second spectroscopy of acidified and neutral bacteriorhodopsin, SPIE Vol. 1403 Laser Application in Life Sciences, 407–416 (1990).

    Google Scholar 

  21. M. Lin and S. Seltzer, The consequences of a deuterium exchange test on proposed mechanism for the purple membrane proton pump, FEBS. Lett. 106:135–139 (1979).

    Article  CAS  Google Scholar 

  22. R.H. Lazier, R.A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: A light-driven proton pump in Halobacterium halobium, Biophys. J. 15:955–962 (1975).

    Article  Google Scholar 

  23. M. Akhtar, P.T. Blosse, and P.B. Dewhurst, Studies on Vision, Biochem. J. 110:693–702 (1968).

    CAS  Google Scholar 

  24. P.E. Blatz, J.H. Mohlerand and H.V. Navanguo, Anion-Induced Wavelength Regulation of Absorption Maxima of Schiff Bases of Retinal, Biochemistry 11:848–855 (1972).

    Article  CAS  Google Scholar 

  25. P.E. Blatz and J.H. Mohler, Effect of Selected Anions and Solvents on the Electronic Absorption, Nuclear Magnetic Resonance and Infrared Spectra of the N-Retinylidene-n-butylammonium cation, Biochemistry 14:2304–2309 (1975).

    Article  CAS  Google Scholar 

  26. I. Tabushi, Y. Kuroda, and K. Shimokawa, Cyclodexin having an amino group as a rhodopsin model, J. Am. Chem. Soc. 101:-4759–4760 (1979).

    Article  CAS  Google Scholar 

  27. G. Varo and L. Keszthely, Photoelectric signals from dried oriented purple membranes of Halobacterium halobium, Biophys. J. 43:47 (1983).

    Article  CAS  Google Scholar 

  28. N.N. Vsevolodov, G.R. Ivanitskii, M.S. Soskin, and V.B. Taranenko, Biochrome films: Reversible media for optical recording, Optoelectron, Instrumm. Data Process 2:39–46 (1986).

    Google Scholar 

  29. J.H. Fendler, “Membrane Mimetic Chemistry,” John Wiley & Sons, New York (1982).

    Google Scholar 

  30. J.A. Reynolds and W. Stoeckenius, Molecular Weight of bacteriorhodopsin solubilized in Triton X-100, Proc. Natl. Acad. Sci. 74:2803–2804 (1977).

    Article  CAS  Google Scholar 

  31. E. Racker, A New Procedure for the Reconstitution of Biologically Active Phospholipid Vesicles, Biochem. Biophys. Res. Commun. 55:224–230 (1973).

    CAS  Google Scholar 

  32. S. Kunugi, S. Nakaizumi, K. Ikeda, N. Itoh, and A. Nomura, Effect of ionic amphiphiles and poly (vinyl alcohol) on the sidedness of purple membrane in dried films, Langmuir, V.7 N.8:1576–1578 (1991).

    Article  CAS  Google Scholar 

  33. T. Furuno and H. Sasabe, Denaturation of purple membranes at the air/water interface studied by SEM, J. of Colloid and Interface Science, 147:225–232 (1991).

    Article  CAS  Google Scholar 

  34. N.A. Dencher and M.P. Heyn, Formation and properties of Bacteriorhodopsin monomers in the non-ionic detergents octyl-β-D-glucoside and Triton X-100, FEBS Letters 96:322–326 (1978).

    Article  CAS  Google Scholar 

  35. N.A. Dencher and M.P. Heyn, Bacteriorhodopsin Monomers Pump Protons, FEBS. Letters 108:307–310 (1979).

    CAS  Google Scholar 

  36. S.B. Hwang, J.I. Korenbrot, and W. Stoeckenius, Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films, J. Membr. Biol. 36:115–135 (1977).

    Article  CAS  Google Scholar 

  37. A.R. McIntosh and F. Boucher, On the action spectrum of the photoelectric transients of bacteriorhodopsin in solid-state films, Biochim. Biophys. Acta 1056:149–158 (1991).

    CAS  Google Scholar 

  38. L.A. Drachev, A.D. Kaulen, and V.P. Skulachev, Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis, FEBS, Letters 87:161–167 (1978).

    CAS  Google Scholar 

  39. S. Michaile and F.T. Hong, Signal modulation via interfacial processes in molecular optoelectronic devices, IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1333–1335 (1989).

    Google Scholar 

  40. H. Sasabe, T. Furuno, and K. Takimoto, Photovoltaics of photoactive protein/polypeptide LB films, Synthetic Metals 28: C787–C792 (1989).

    Article  CAS  Google Scholar 

  41. T. Katsura, Ordering of cationic amphiphiles on two-dimensional lattice of bacteriorhodopsin, IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, 1328 (1989).

    Google Scholar 

  42. R.J. Cherry, U. Muller, R. Henderson, and M.P. Heyn, Temperature-dependent aggregation of Bacteriorhodopsin in dipalmitoyl-and dimyristoylphosphatidylcholine vesicles, J. Mol. Biol. 121:283–298 (1978).

    Article  CAS  Google Scholar 

  43. S. Kunugi, K. Tatsukawa, T. Nakajima, A. Nomura, and A. Tanaka, Orientation of bacteriorhodopsin in non-aqueous polymer membrane, Polymer Bulletin 21:5962 (1989).

    Article  Google Scholar 

  44. S. Kungi, S. Nakaizumi, K. Ikeda, N. Itoh, and A. Nomura, Effect of ionic amphiphiles and poly (vinyl alcohol) on the sidedness of purple membrane in dried film, Langmuir 7:1576–1578 (1991).

    Article  Google Scholar 

  45. N. Hampp and C. Brauchle, Bacteriorhodopsin and its functional variants: Potential applications in modern optics, in: “Photochromism, Molecules and Systems,” H. Durr and H. Bouas-Laurent (ed.), Elsevier, New York, 954–975 (1990).

    Google Scholar 

  46. B. Lorber, L.J. DeLucas, and J.B. Bishop, Changes in the physico-chemical properties of the detergent octyl glucoside during membrane protein crystallization using a salt as the precipitant, J. of Crystal Growth 110:103–113 (1991).

    Article  CAS  Google Scholar 

  47. Z. Danzshazy and B. Karvaly, Incorporation of bacteriorhodopsin into a bilayer lipid membrane: A photoelectric-spectroscopic study. FEBS Lett. 72:136–138 (1976).

    Article  Google Scholar 

  48. K.J. Hellingwerf, J.C. Arents, B.J. Scholte, and H.V. Westerhoff, Bacteriorhodopsin in liposomes, Biochim. Biophys. Acta 547:561–582 (1979).

    CAS  Google Scholar 

  49. K. Seifert, K. Fendler, and E. Bamberg, Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys. J. 64:384–391 (1993).

    Article  CAS  Google Scholar 

  50. K.S. Huang, H. Bayley, and H.G. Khorana, Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid, Proc. Natl. Acad. Sci. USA, 77:323–327 (1980).

    Article  CAS  Google Scholar 

  51. D. Oesterhelt, Bacteriorhodopsin as a light driven ion exchanger, FEBS Lett. 64:20 (1976).

    Article  CAS  Google Scholar 

  52. M.M. Taqui Khan and J.P. Bhatt, Light dependent hydrogen production by Halobacterium halobium coupled to Escherichia coli, Int. J. Hydrogen Energy 14:643–645 (1989).

    Article  Google Scholar 

  53. A.S. Lader, C. Tamanaha, J. Li, N.W. Downer, H.G. Smith, Y. Mendelson, and R.A. Peura, An investigative study of membrane-based biosensors, IEEE CH2997–5/91, 253–254 (1991).

    Google Scholar 

  54. T. Miyasaka and K. Koyama, Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface, Thin Solid Films, 210/211:146–149 (1992).

    Article  Google Scholar 

  55. K.J. Hellingwerf, B.J. Scholte, and K. Van Dam, Bacteriorhodopsin vesicles an outline of the requirements for light-dependent H+ pumping. Biochim. et Biophys. Acta 513:66–77 (1978).

    Article  CAS  Google Scholar 

  56. N.A. Dencher, Spontaneous transmembrane insertion of membrane protein into lipid resides facilitated by short-chain lecithins. Biochemistry 25:1195–1200 (1986).

    Article  CAS  Google Scholar 

  57. G.W. Rayfield, Nonlinear absorbance effects in bacteriorhodopsin, SPIE Vol. 1436 photochemistry and photoelectrochemistry of organic and inorganic molecular thin films, 150–159 (1991).

    CAS  Google Scholar 

  58. S. Kunugi, T. Kusano, H. Yamada, and Y. Nakamura, Orientation and immobilization of bacteriorhodopsin in polyacrylamide gel membranes, Polymer Bulletin 19:417–421 (1988).

    CAS  Google Scholar 

  59. M.M. Taqui Khan and J.P. Bhatt, Efficient reduction of cyclohexanone to cyclohexanol and cyclohexane by Halobacterium halobium MMT22, J. of Mol. Catalysis, 63:L15–L19 (1990).

    Article  Google Scholar 

  60. S. Michaile, A. Duschl, J.K. Lanyi, and F.T. Hong, Chloride ion modulation of the fast photoelectric signal in halorhodopsin thin films, Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12:1721–1723 (1990).

    Google Scholar 

  61. T. Furuno, K. Takimoto, T. Kouyama, A. Ikegami, and H. Sasabe, Photovoltaic properties of purple membrane Langmuir-Blodgett films, Thin Solid Film 160:145–151 (1988).

    Article  CAS  Google Scholar 

  62. N. Hampp, C. Brauchle, and D. Oesterhelt, Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media. Biophys. J. 58:83–93 (1990).

    Article  CAS  Google Scholar 

  63. N.N. Vsevolodov, A.B. Druzhko, and T.V. Djukova, Actual possibilities of Bacteriorhodopsin in: “Molecular Electronics, Biosensors, and Biocomputers,” F.T. Hong (Ed.), Plenum Press, New York (1989) 381–384.

    Google Scholar 

  64. F.T. Hong (Ed.), “Molecular Electronics, Biosensors and Biocomputers,” Plenum Press, New York (1989).

    Google Scholar 

  65. R.M. Metzger, P. Day, G.C. Papavassiliou, “Lower-dimensional System and Molecular Electronics,” Plenum Press, New York (1991).

    Google Scholar 

  66. P.I. Lazarev (Ed.), “Molecular Electronics, Materials and Methods,” Kluwer Academic Publishers, Boston (1991).

    Google Scholar 

  67. A. Aviram (Ed.), “Molecular Electronics-Science and Technology,” American Institute of Physics, New York (1992).

    Google Scholar 

  68. E. Bamberg, P. Hegemann, and D. Oesterhelt, The chromoprotein of halorhodopsin is the light-driven electrogenic chloride pump in Halobacterium halobium. Biochemistry 23:6216–6221 (1984).

    Article  CAS  Google Scholar 

  69. R.B. Gross, K.C. Izgi, and R.R. Birge, Holographic thin films, spatial light modulators, and optical associative memories based on bacteriorhodopsin. Proceedings of SPIE - The International Society for Optical Engineering 1662:186–196 (1992).

    CAS  Google Scholar 

  70. H. Sasabe, T. Furuno, A. Sato, and K.M. Ulmer, 2-Dimensional protein crystals for bioelectronics, IEEE Engineering in Medicine and Biology Society 10th Annual International Conference CH2566–8/88 P. 1003 (1988).

    Google Scholar 

  71. A.K. Mitra, L.J.W. Miercke, M.C. Betlach, R.F. Shand, and R.M. Stroud, High resolution electron diffraction study in projection on bacteriorhodopsin mutants: Ground state structure in D96N is unaltered. Abstracts 37th Annual Meeting of Biophysical Society, Washington, DC, Feb. 14–18, 1993, A246 (1993).

    Google Scholar 

  72. S. Kunugi, H. Yamada, Y. Nakamura, F. Tokunaga, and A. Tanaka, Oriented immobilization of bacteriorhodopsin in synthetic polymer membranes by use of electric static field, Polymer Bulletin 18:87–90 (1987).

    CAS  Google Scholar 

  73. A.V. Sharkov and T. Gillbro, Second harmonic generation in oriented purple membrane films under picosecond light excitation, Thin Solid Films, 292:L9–L14 (1991).

    Article  Google Scholar 

  74. O.A. Aktsypetrov, N.N. Akhmediev, N.N. Vsevolodov, D.A. Esikov, and D.A. Shutov, Photochromism in nonlinear optics: Photocontrolling generation of the second harmonics by bacteriorhodopsin molecules, Dokl. Akad. Nauk. USSR 293:594 (1987).

    Google Scholar 

  75. B.P. Kethis, Piezoelectric mechanism of charge active transport in purple membrane from Halobacterium halobium, Biolog. membrane 1:1307 (1984).

    Google Scholar 

  76. N.N. Vsevolodov, G.R. Ivanitsky, M.S. Soskin, and V.B. Taranenko, “Biochrom” films-reversible medium for optical recording, Avtometriya 2:41–48 (1986).

    Google Scholar 

  77. N.M. Kozhevnikov, Y.O. Barmenkov, and M.Y. Lipovskaya, Holographic recording in photorefractive media containing bacteriorhodopsin (PMBR), SPIE Vol. 1507 Holographic Optics III: Principles and Applications 517–524 (1991).

    Google Scholar 

  78. N. Hampp, C. Brauchle, and D. Oesterhelt, Bacteriorhodopsin as a reversible holigraphic medium in optical processing, Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12:1719–1720 (1990).

    Google Scholar 

  79. Y.O. Barmenkov, V.V. Zosimov, N.M. Kozhevnikov, O.I. Kotov, L.M. Lyamshev, and V.M. Nikolaev, Detection of a phase-modulation signal from a fiber-optic interferometer by means of a dynamic hologram in bacteriorhodopsin. Sov. Phys. Acoust. 33:334–335 (1987).

    Google Scholar 

  80. E.Y. Korchemskaya, M.S. Soskin, and V.B. Taranenko, Spatial polarization wavefront reversed under conditions of four-wave mixing in biochrome films. Sov. J. Quantum Electron. 17:450–454 (1987).

    Article  Google Scholar 

  81. R.R. Birge, Optical random access memory based on bacteriorhodopsin. Bull. Am. Phys. Soc. 34:483 (1989).

    Google Scholar 

  82. K. Singh and S.R. Caplan, The purple membrane and solar energy conversion. TIBS 5:62–64 (1980).

    CAS  Google Scholar 

  83. F.T. Hong, The bacteriorhodopsin model membrane system as a prototype molecular computing element. Biosystems 19:223–236 (1986).

    Article  CAS  Google Scholar 

  84. C. Mobarry and A. Lewis, Implementation of neural networks using photoactivated conducting biological materials SPIE J. 700:304–308 (1986).

    CAS  Google Scholar 

  85. H.S. Van Walraven, R.L. Van Der Bend, M.J.M. Hagendoorn, N.P. Haak, A. Oskam, A. Oostdam, K. Krab, and R. Kraayenhof, Comparison of ATP Synthesis Efficiencies in ATPase proteoliposones of different complexities. Bioelectrochemistry and Bioenergetics 16:167–180 (1986).

    Article  Google Scholar 

  86. Computer, Nov. 1992, Vol 2, No. 11, published by IEEE Computer Society, Los Alamitos, CA, 90720–1264.

    Google Scholar 

  87. P. Yager, Functional reconstitution of a membrane protein in a diacetylenic polymerizable lecithin. Biosensors 2:363–373 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, M.S., Premuzic, E.T. (1994). Applications of Bacteriorhodopsin in Membrane Mimetic Chemistry. In: Yen, T.F., Gilbert, R.D., Fendler, J.H. (eds) Advances in the Applications of Membrane-Mimetic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2580-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2580-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6103-9

  • Online ISBN: 978-1-4615-2580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics