Skip to main content

Abstract

Advanced materials in the nanometer dimension are the subject of ever increasing scrutiny, reports, and review articles.1 Attention is increasingly focused upon the formation of “intelligent” materials which can, to different degrees, self assemble, self diagnose, self repair, and recognize and discriminate physical and/or chemical stimuli, and, at the extreme, have the capability of learning and self replicating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Ozin, Nanochemistry: synthesis in diminishing dimensions, Adv. Mater. 4:612 (1992).

    Article  CAS  Google Scholar 

  2. A. Henglein, Mechanism of reactions on colloidal microelectrodes and size quantization effects, Top. Curr. Chem. 143:115 (1988).

    Google Scholar 

  3. A. Henglein, Physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89:1861 (1989).

    Article  CAS  Google Scholar 

  4. M.G. Bawendi, M.L. Steigerwald, and L.E. Brus, The quantum mechanics of larger semiconductor clusters (“quantum dots”), Ann. Rev. Phys. Chem. 41:477 (1990).

    Article  CAS  Google Scholar 

  5. Y. Wang, Nonlinear optical properties of nanometer-sized semiconductor clusters, Acc. Chem. Res. 24:133 (1991).

    Article  CAS  Google Scholar 

  6. A. Chiabrera, E. Di Zitti, F. Costa, and G.M. Bisio„ Physical limits of integration and information processing in molecular systems, J. Phys. D: Appl. Phys. 22:1571 (1989).

    Article  Google Scholar 

  7. M.A. Reed, Quantum dots, Scientific American January:118 (1993).

    Google Scholar 

  8. A. Adamson. “Physical Chemistry of Surfaces,” John Wiley & Sons, New York (1990).

    Google Scholar 

  9. J.H. Fendler. “Membrane Mimetic Chemistry,” John Wiley, New York (1982).

    Google Scholar 

  10. P. Westbroek and E.W. de Jong. “Biomineralization and Biological Metal Accumulation,” Reidel, Dordrecht, Holland (1983).

    Google Scholar 

  11. K. Simkiss and K.M. Wilbur. “Biomineralization,” Academic Press, San Diego (1989).

    Google Scholar 

  12. H.A. Lowenstam and S. Weiner. “On Biomineralization,” Oxford University Press, New York (1989).

    Google Scholar 

  13. L. Addadi and S. Weiner, Control and design principles in biological mineralization, Angew. Chem. Int. Ed. Eng. 31:153 (1992).

    Article  Google Scholar 

  14. S. Mann, D.D. Archibald, J.M. Didymus, B.R. Heywood, F.C. Meldrum, and V.J. Wade, Biomineralization: biomimetic potential at the inorganic-organic interface, MRS Bull. 17(10):32 (1992).

    CAS  Google Scholar 

  15. S. Mann, J. Webb, and R.J.P. Williams. “Biomineralization, Chemical and Biological Perspectives,” VCH, Weinheim, Germany (1989).

    Google Scholar 

  16. M. Meyer, C. Wallberg, K. Kurihara, and J.H. Fendler, Photosensitized charge separation and hydrogen generation in reversed micelle entrapped platinized colloidal cadmium sulfide, J. Chem. Soc. Chem. Commun. 90 (1984).

    Google Scholar 

  17. P. Lianos and J.K. Thomas, Cadmium sulfide of small dimensions produced in inverted micelles, Chem. Phys. Lett. 125:299 (1986). P. Lianos and J.K. Thomas, Small CdS particles in inverted micelles, J. Colloid Interface Sci. 117:505 (1987).

    Google Scholar 

  18. T.F. Towey, A. Khan-Lodhi, and B.H. Robinson, Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-aerosol-OT-oil microemulsions, J. Chem. Soc. Faraday Trans. 86:3757 (1990).

    Article  CAS  Google Scholar 

  19. L. Motte, C. Petit, L. Boulanger, P. Lixon, and M.P. Pileni, Synthesis of cadmium sulfide in situ in cadmium bis(ethyl-2-hexyl) sulfosuccinate reverse micelle, Langmuir 8:1049 (1992).

    Article  CAS  Google Scholar 

  20. T. Dannhauser, M. O’Neil, K. Johansson, D. Whitten, and G. McLendon, Photophysics of quantized colloidal semiconductors dramatic luminescence enhancement by binding of simple amines, J. Phys. Chem. 90:6074 (1986).

    Article  CAS  Google Scholar 

  21. M.L. Steigerwald, A.P. Alivisatos, J.M. Gibson, T.D. Harris, R. Kortan, A.J. Muller, A.M. Thayer, T.M. Duncan, D.C. Douglas, and L.E. Brus, Surface derivatization and isolation of semiconductor cluster molecules, J. Am. Chem. Soc. 110:3046 (1988).

    Article  CAS  Google Scholar 

  22. M.A. Marcus, W. Flood, and M.L. Steigerwald, Structure of capped CdSe clusters by EXAFS, J. Phys. Chem. 95:1572 (1991).

    Article  CAS  Google Scholar 

  23. Y.M. Tricot and J.H. Fendler, In situ generated colloidal semiconductor CdS particles in dihexadecylphosphate vesicles: quantum size and asymmetry effects, J. Phys. Chem. 90:3369 (1986).

    Article  CAS  Google Scholar 

  24. H.-C. Youn, Y.-M. Tricot, and J.H. Fendler, Photochemistry of colloidal cadmium sulfide at dihexadecylphosphate interfaces: electron transfer to methylviologen and colloidal rhodium, J. Phys. Chem. 91:581 (1987).

    Article  CAS  Google Scholar 

  25. H.J. Watzke and J.H. Fendler, Quantum size effects of in situ generated colloidal CdS particles in dioctadecyldimethylammonium chloride surfactant vesicles, J. Phys. Chem. 91:854 (1987).

    Article  CAS  Google Scholar 

  26. -1.-C. Youn, S. Baral, and J.H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in-situgenerated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation, J. Phys. Chem. 92:6320 (1988).

    Article  CAS  Google Scholar 

  27. S. Baral, X.K. Zhao, R. Rolandi, and J.H. Fendler, Formation and characterization of microcrystalline semiconductor particles on bilayer lipid membranes, J. Phys. Chem. 91:2701 (1987).

    Article  CAS  Google Scholar 

  28. X.K. Zhao, S. Baral, R. Rolandi, and J.H. Fendler, Semiconductor particles in bilayer lipid membranes (BLMs). Formation, characterization, and photoelectrochemistry, J. Am. Chem. Soc. 110:1012 (1988).

    Article  CAS  Google Scholar 

  29. X.K. Zhao, P.J. Herve, and J.H. Fendler, Magnetic particulate thin films on bilayer lipid membranes (BLMs), J. Phys. Chem. 93:908 (1989).

    Article  CAS  Google Scholar 

  30. X.K. Zhao, S. Xu, and J.H. Fendler, Ultrasmall magnetic particles in Langmuir-Blodgett films, J. Phys. Chem. 94:2573 (1990).

    Article  CAS  Google Scholar 

  31. S. Xu, S.K. Zhao, and J.H. Fendler, Ultrasmall semiconductor particles sandwiched between surfactant headgroups in Langmuir-Blodgett films, Adv. Mater. 2:183 (1990).

    Article  CAS  Google Scholar 

  32. Y. Yuan, I. Cabasso, and J.H. Fendler, Size-quantized, semiconductor-particle-mediated photoelectron transfer in ultrathin, phosphonate-functionalized, polymer-blend membranes, Macromol. 23:3198 (1990).

    Article  CAS  Google Scholar 

  33. K.C. Yi and J.H.Fendler, Template-directed semiconductor size quantization at monolayer-water interfaces and between the headgroups of Langmuir-Blodgett films, Langmuir 6:1519 (1990).

    Article  CAS  Google Scholar 

  34. X.K. Zhao, Y. Yuan, and J.H. Fendler, Size-quantized semiconductor particles formed at monolayer surfaces, J. Chem. Soc. Chem. Commun. 1248 (1990).

    Google Scholar 

  35. X.K.Zhao, S. Xu, and J.H. Fendler, Semiconductor particles formed at monolayer surfaces, Langmuir 7:520 (1991).

    Article  CAS  Google Scholar 

  36. X.K. Zhao and J.H. Fendler, Semiconductor particulate films on solid supports, Chem. Mater. 3:168 (1991).

    Article  CAS  Google Scholar 

  37. X.K. Zhao and J.H. Fendler, Size quantization in semiconductor particulate films, J. Phys. Chem. 95:3716 (1991).

    Article  CAS  Google Scholar 

  38. X.K. Zhao, L.D. McCormick, and J.H. Fendler, Scanning tunneling microscopic, optical, and scanning tunneling spectroscopic characterization of size-quantized cadmium selenide particulate films in situ generated at monolayer interfaces, Langmuir 7:1255 (1991).

    Article  CAS  Google Scholar 

  39. X.K. Zhao, L.D. McCormick, and J.H. Fendler, Electrical and photoelectrochemical characterization of CdS particulate films by scanning electrochemical microscopy, scanning tunneling microscopy and scanning tunneling spectroscopy, Chem. Mater. 3:922 (1991).

    Article  CAS  Google Scholar 

  40. X.K. Zhao, L.D. McCormick, and J.H. Fendler, Preparation-dependent rectification behavior of lead sulfide particulate films, Adv. Mater. 4:93 (1992).

    Article  CAS  Google Scholar 

  41. X.K. Zhao, J. Yang, L.D. McCormick, and J.H. Fendler, Epitaxial formation of PbS crystals under arachidic acid monolayers, J. Phys. Chem. 96:9933 (1992).

    Article  CAS  Google Scholar 

  42. J.Yang, J.H. Fendler, T.-C. Jao, and T. Laurion, Electron and atomic force microscopic investigations of lead selenide crystals grown under monolayers, J. Electron Microsc. Tech. in press (1993).

    Google Scholar 

  43. K. Kjaer, J. Als-Nielsen, C.A. Helm, P. Tippmann-Krayer, and H.M öhwald, Synchrotron x-ray diffraction and reflection studies of arachidic acid monolayers at the air-water interface, J. Phys. Chem. 93:3200 (1989).

    Article  CAS  Google Scholar 

  44. J. Ms-Nielsen and H. Mohwald, Synchrotron x-ray scattering studies of Langmuir films, in: “Handbook on Synchrotron Radiation,” S. Ebashi, M. Koch, and E. Rubinstein, eds., Elsevier Science Publishers, B.V., The Netherlands (1991).

    Google Scholar 

  45. D. Jacquemain, S.G. Wolf, F. Leveiller, M. Deutsch, K. Kjaer, J. Als-Nielsen, M. Lahav, and L. Leiserowitz, Two-dimensional crystallography of amphiphilic molecules at the air-water interface, Angew Chem. Int. Ed. Engl. 31:130 (1992).

    Article  Google Scholar 

  46. D. Möbius and H. Möhwald, Structural characterization of monolayers at the air-water interface, Adv. Mater. 3:19 (1991).

    Article  Google Scholar 

  47. D. Jacquemain, F. Leveiller, S.P. Weinbach, L. Leiserowitz, K. Kjaer, and J. Als-Nielsen, Crystal structures of self-aggregates of insoluble aliphatic amphiphilic molecules at the air-water interface, J. Am. Chem. Soc. 113:7684 (1991).

    Article  CAS  Google Scholar 

  48. P. Tippmann-Krayer and H. Möhwald, Precise determination of tilt angles by x-ray diffraction and reflection with arachidic acid monolayers, Langmuir 7:2303 (1991).

    Article  CAS  Google Scholar 

  49. Y. Yuan, I. Cabasso, and J.H. Fendler, Preparation of ultrathin, size-quantized semiconductor particulate films at oriented mono-and poly(vinylbenzyl)phosphonate interfaces and their characterization on solids, Chem. Mater. 2:226 (1990).

    Article  CAS  Google Scholar 

  50. K. Yi and J.H. Fendler, Unpublished results (1992).

    Google Scholar 

  51. H. Möhwald, Phospholipid and phospholipid-protein monolayers at the air/water interface, Annu. Rev. Phys. Chem. 41:441 (1990).

    Article  Google Scholar 

  52. M. Sze. “Physics of Semiconductor Devices,” John Wiley & Sons, New York (1981).

    Google Scholar 

  53. K. Yi and J.H. Fendler, Unpublished results (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fendler, J.H. (1994). Membrane-Mimetic Approach to Nanotechnology. In: Yen, T.F., Gilbert, R.D., Fendler, J.H. (eds) Advances in the Applications of Membrane-Mimetic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2580-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2580-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6103-9

  • Online ISBN: 978-1-4615-2580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics