Skip to main content
Book cover

Actin pp 35–49Cite as

Actin-Bound Nucleotide/Divalent Cation Interactions

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 358))

Abstract

The protein actin is a major constituent of the cytoskeleton of virtually all eukaryotic cells. The relatively stable actin filament structure of muscle cells is essential to muscle contraction; the motile events of non-muscle cells involve active reorganization of the actin filament network. Actin has binding sites for one tightly bound divalent cation and one adenosine nucleotide per molecule. These ligands are important to the stability of the actin molecule and actin filament, and to the ATP hydrolysis that is involved in actin polymerization in a way which is still incompletely understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Diebler H., M. Eigen, G. Ilgenfritz, G. Maass, and R. Winkler. 1969. Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl. Chem. 20: 93–115.

    Article  CAS  Google Scholar 

  • Estes, J.E. and C. Moos. 1969. Effect of Bound-Nucleotide Substitution on the Properties of F-Actin. Arch. Biochem. Biophys. 132: 388–396.

    Article  PubMed  CAS  Google Scholar 

  • Estes, J.E., L.A. Selden, and L.C. Gershman. 1987. Tight Binding of Divalent Cations to Monomelic Actin. J. Biol. Chem. 262: 4952–4957.

    PubMed  CAS  Google Scholar 

  • Estes, J.E., L.A. Selden, H.J. Kinosian, and L.C. Gershman. 1992. Tightly-bound divalent cation of actin. J. Musc. Res. Cell Mot. 13: 272–284.

    Article  CAS  Google Scholar 

  • Frieden, C., D. Lieberman, and Helen R. Gilbert. 1980. A Fluorescent Probe for Conformational Changes in Skeletal Muscle G-Actin. J. Biol. Chem. 255: 8991–8993.

    PubMed  CAS  Google Scholar 

  • Frieden, C. 1982. The Mg-induced Conformational Change in Rabbit Skeletal Muscle G-actin. J. Biol. Chem. 257: 2882–2886.

    PubMed  CAS  Google Scholar 

  • Frieden, C. and K. Patane. 1988. Mechanism for Nucleotide Exchange in Monomeric Actin. Bio chemistry 27: 3812–3820.

    CAS  Google Scholar 

  • Gershman, L.C., L.A. Selden, and J.E. Estes. 1986. High Affinity Binding of Divalent Cation to Actin Monomer is Much Stronger than Previously Reported. Biochem. Biophys. Res. Comm. 135: 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Gershman, L.C., L.A. Selden, H.J. Kinosian, and J.E. Estes. 1989. Preparation and polymerization properties of monomeric ADP-Actin. Biochem. Biophys. Acta 995: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Gershman, L.C, L.A. Selden, and J.E. Estes. 1991. High Affinity Divalent Cation Exchange on Actin. Association rate measurements support the simple competitive model. J. Biol. Chem. 266: 76–82.

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont, P.J., M.I. Furman, D. Wachsstock, D. Safer, V.T. Nachmias, and T.D. Pollard. 1992. The Control of Actin Nucleotide Exchange by ThymosinBeta4 and Profilin. A Potential Regulatory Mechanism for Actin Polymerization in Cells. Mol. Biol. Cell 3: 1015–1024.

    PubMed  CAS  Google Scholar 

  • Kabsch W., H.G. Mannherz, D. Suck, E.F. Pai, and K.C. Holmes. 1990. Atomic structure of the actin: DNase I complex. Nature 347: 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, M. and F. Oosawa. 1969. Behavior of Divalent Cations and Nucleotides Bound to F-actin. Biochem. Biophys. Acta 172: 300–310.

    Article  PubMed  CAS  Google Scholar 

  • Kinosian, H.J., L.A. Selden, J.E. Estes, and L.C. Gershman. 1993. Nucleotide Binding to Actin: Cation dependence of nucleotide dissociation and exchange rates. J. Biol. Chem. 268: 8683–8691.

    PubMed  CAS  Google Scholar 

  • Kitazawa T., H. Shuman, and A.P. Somlyo. 1982. Calcium and magnesium binding to thin and thich filaments in skinned muscle fibres:electron probe analysis. J. Musc. Res. Cell Mot. 3: 437–454.

    Article  CAS  Google Scholar 

  • Konno, K. and Manuel F. Morales. 1985. Factors in G-actin conformation. Proc. Natl. Acad. Sci. 82: 7904–7908.

    Article  PubMed  CAS  Google Scholar 

  • Martonosi A., C.M. Molino, and J. Gergely. 1964. The Binding of Divalent Cations to Actin. J. Biol. Chem. 239: 1057–1064.

    CAS  Google Scholar 

  • Maruyama, K. and J. Gergely. 1961. Removal of the bound calcium of G-actin by ethylenediamine tetraacetate (EDTA). Biochem. Biophys. Res. Commun. 6: 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Newman J., K.S. Zaner, K.L. Schick, L.C. Gershman, L.A. Selden, H.J. Kinosian, J.L. Travis, and J.E. Estes. 1993. Nucleotide exchange and rheometric studies with F-actin prepared from ATP-or ADP-monomeric actin. Biophys. J. 64: 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  • Nowak E., H. Strzelecka-Golaszewska, and R. Goody. 1988. Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry 27: 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D. 1984. Polymerization of ADP-actin. J. Cell Biol. 99: 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Selden, L.A., L.C. Gershman, and J.E. Estes. 1986. A kinetic comparison between Mg-actin and Ca-actin. J. Musc. Res. Cell Mot. 7: 215–224.

    Article  CAS  Google Scholar 

  • Selden, L.A., L.C. Gershman, H.J. Kinosian, and J.E. Estes. 1987. Conversion of ATP-actin to ADP-actin reverses the affinity of monomeric actin for Ca vs Mg. FEBS Lett. 217: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Selden, L.A., J.E. Estes, and L.C. Gershman. 1989. High Affinity Divalent Cation Binding to Actin Effect of Low Affinity Salt Binding. J. Biol. Chem. 264: 9271–9277.

    PubMed  CAS  Google Scholar 

  • Tsien, R.Y., T. Pozzan, and T.J. Rink. 1982. Calcium Homeostasis in Intact Lymphocytes: Cytoplas mic Free Calcium Monitored With a New, Intracellularly Trapped Fluorescent Indicator. J. Cell Biol. 94: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Valentin-Ranc, C. and M.-F. Carlier. 1989. Evidence for the direct interaction between tightly bound divalent metal ion and ATP on actin: binding of the isomers of beta and gamma-bidendate CrATP to actin. J. Biol Chem. 264: 20871–20880.

    PubMed  CAS  Google Scholar 

  • Weber A., R. Herz, and I. Reiss. 1969. The role of magnesium in the relaxation of myofibrils. Biochemistry 8: 2266–227

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gershman, L.C., Selden, L.A., Kinosian, H.J., Estes, J.E. (1994). Actin-Bound Nucleotide/Divalent Cation Interactions. In: Estes, J.E., Higgins, P.J. (eds) Actin. Advances in Experimental Medicine and Biology, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2578-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2578-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6102-2

  • Online ISBN: 978-1-4615-2578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics