Actin pp 35-49 | Cite as

Actin-Bound Nucleotide/Divalent Cation Interactions

  • Lewis C. Gershman
  • Lynn A. Selden
  • Henry J. Kinosian
  • James E. Estes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 358)


The protein actin is a major constituent of the cytoskeleton of virtually all eukaryotic cells. The relatively stable actin filament structure of muscle cells is essential to muscle contraction; the motile events of non-muscle cells involve active reorganization of the actin filament network. Actin has binding sites for one tightly bound divalent cation and one adenosine nucleotide per molecule. These ligands are important to the stability of the actin molecule and actin filament, and to the ATP hydrolysis that is involved in actin polymerization in a way which is still incompletely understood.


Divalent Cation Nucleotide Binding Nucleotide Exchange Apparent Rate Constant Dissociation Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Diebler H., M. Eigen, G. Ilgenfritz, G. Maass, and R. Winkler. 1969. Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl. Chem. 20: 93–115.CrossRefGoogle Scholar
  2. Estes, J.E. and C. Moos. 1969. Effect of Bound-Nucleotide Substitution on the Properties of F-Actin. Arch. Biochem. Biophys. 132: 388–396.PubMedCrossRefGoogle Scholar
  3. Estes, J.E., L.A. Selden, and L.C. Gershman. 1987. Tight Binding of Divalent Cations to Monomelic Actin. J. Biol. Chem. 262: 4952–4957.PubMedGoogle Scholar
  4. Estes, J.E., L.A. Selden, H.J. Kinosian, and L.C. Gershman. 1992. Tightly-bound divalent cation of actin. J. Musc. Res. Cell Mot. 13: 272–284.CrossRefGoogle Scholar
  5. Frieden, C., D. Lieberman, and Helen R. Gilbert. 1980. A Fluorescent Probe for Conformational Changes in Skeletal Muscle G-Actin. J. Biol. Chem. 255: 8991–8993.PubMedGoogle Scholar
  6. Frieden, C. 1982. The Mg-induced Conformational Change in Rabbit Skeletal Muscle G-actin. J. Biol. Chem. 257: 2882–2886.PubMedGoogle Scholar
  7. Frieden, C. and K. Patane. 1988. Mechanism for Nucleotide Exchange in Monomeric Actin. Bio chemistry 27: 3812–3820.Google Scholar
  8. Gershman, L.C., L.A. Selden, and J.E. Estes. 1986. High Affinity Binding of Divalent Cation to Actin Monomer is Much Stronger than Previously Reported. Biochem. Biophys. Res. Comm. 135: 607–614.PubMedCrossRefGoogle Scholar
  9. Gershman, L.C., L.A. Selden, H.J. Kinosian, and J.E. Estes. 1989. Preparation and polymerization properties of monomeric ADP-Actin. Biochem. Biophys. Acta 995: 109–115.PubMedCrossRefGoogle Scholar
  10. Gershman, L.C, L.A. Selden, and J.E. Estes. 1991. High Affinity Divalent Cation Exchange on Actin. Association rate measurements support the simple competitive model. J. Biol. Chem. 266: 76–82.PubMedGoogle Scholar
  11. Goldschmidt-Clermont, P.J., M.I. Furman, D. Wachsstock, D. Safer, V.T. Nachmias, and T.D. Pollard. 1992. The Control of Actin Nucleotide Exchange by ThymosinBeta4 and Profilin. A Potential Regulatory Mechanism for Actin Polymerization in Cells. Mol. Biol. Cell 3: 1015–1024.PubMedGoogle Scholar
  12. Kabsch W., H.G. Mannherz, D. Suck, E.F. Pai, and K.C. Holmes. 1990. Atomic structure of the actin: DNase I complex. Nature 347: 37–44.PubMedCrossRefGoogle Scholar
  13. Kasai, M. and F. Oosawa. 1969. Behavior of Divalent Cations and Nucleotides Bound to F-actin. Biochem. Biophys. Acta 172: 300–310.PubMedCrossRefGoogle Scholar
  14. Kinosian, H.J., L.A. Selden, J.E. Estes, and L.C. Gershman. 1993. Nucleotide Binding to Actin: Cation dependence of nucleotide dissociation and exchange rates. J. Biol. Chem. 268: 8683–8691.PubMedGoogle Scholar
  15. Kitazawa T., H. Shuman, and A.P. Somlyo. 1982. Calcium and magnesium binding to thin and thich filaments in skinned muscle fibres:electron probe analysis. J. Musc. Res. Cell Mot. 3: 437–454.CrossRefGoogle Scholar
  16. Konno, K. and Manuel F. Morales. 1985. Factors in G-actin conformation. Proc. Natl. Acad. Sci. 82: 7904–7908.PubMedCrossRefGoogle Scholar
  17. Martonosi A., C.M. Molino, and J. Gergely. 1964. The Binding of Divalent Cations to Actin. J. Biol. Chem. 239: 1057–1064.Google Scholar
  18. Maruyama, K. and J. Gergely. 1961. Removal of the bound calcium of G-actin by ethylenediamine tetraacetate (EDTA). Biochem. Biophys. Res. Commun. 6: 245–249.PubMedCrossRefGoogle Scholar
  19. Newman J., K.S. Zaner, K.L. Schick, L.C. Gershman, L.A. Selden, H.J. Kinosian, J.L. Travis, and J.E. Estes. 1993. Nucleotide exchange and rheometric studies with F-actin prepared from ATP-or ADP-monomeric actin. Biophys. J. 64: 1559–1566.PubMedCrossRefGoogle Scholar
  20. Nowak E., H. Strzelecka-Golaszewska, and R. Goody. 1988. Kinetics of nucleotide and metal ion interaction with G-actin. Biochemistry 27: 1785–1792.PubMedCrossRefGoogle Scholar
  21. Pollard, T.D. 1984. Polymerization of ADP-actin. J. Cell Biol. 99: 769–777.PubMedCrossRefGoogle Scholar
  22. Selden, L.A., L.C. Gershman, and J.E. Estes. 1986. A kinetic comparison between Mg-actin and Ca-actin. J. Musc. Res. Cell Mot. 7: 215–224.CrossRefGoogle Scholar
  23. Selden, L.A., L.C. Gershman, H.J. Kinosian, and J.E. Estes. 1987. Conversion of ATP-actin to ADP-actin reverses the affinity of monomeric actin for Ca vs Mg. FEBS Lett. 217: 89–93.PubMedCrossRefGoogle Scholar
  24. Selden, L.A., J.E. Estes, and L.C. Gershman. 1989. High Affinity Divalent Cation Binding to Actin Effect of Low Affinity Salt Binding. J. Biol. Chem. 264: 9271–9277.PubMedGoogle Scholar
  25. Tsien, R.Y., T. Pozzan, and T.J. Rink. 1982. Calcium Homeostasis in Intact Lymphocytes: Cytoplas mic Free Calcium Monitored With a New, Intracellularly Trapped Fluorescent Indicator. J. Cell Biol. 94: 325–334.PubMedCrossRefGoogle Scholar
  26. Valentin-Ranc, C. and M.-F. Carlier. 1989. Evidence for the direct interaction between tightly bound divalent metal ion and ATP on actin: binding of the isomers of beta and gamma-bidendate CrATP to actin. J. Biol Chem. 264: 20871–20880.PubMedGoogle Scholar
  27. Weber A., R. Herz, and I. Reiss. 1969. The role of magnesium in the relaxation of myofibrils. Biochemistry 8: 2266–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Lewis C. Gershman
    • 1
    • 2
  • Lynn A. Selden
    • 1
    • 2
  • Henry J. Kinosian
    • 1
    • 2
  • James E. Estes
    • 1
    • 2
  1. 1.Research and Medical ServicesStratton VA Medical CenterAlbanyUSA
  2. 2.Departments of Medicine and Physiology and Cell BiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations