Skip to main content

Control of p52(PAI-1) Gene Expression in Normal and Transformed Rat Kidney Cells: Relationship between p52(PAI-1) Induction and Actin Cytoarchitecture

  • Chapter
Book cover Actin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 358))

Abstract

Alterations in cell shape or substrate adhesion often accompany changes in the expression and/or distribution of proteins that influence cellular architecture; these include structural elements which comprise the extracellular matrix (ECM), their transmembrane receptors (integrins) as well as components of the focal adhesion sites (focal contacts) (Spiegelman and Farmer, 1982; Ben-Ze’ev, 1986; Ben-Ze’ev, 1987; Dike and Farmer, 1988; Rodriguez et al., 1989; Dalton et al., 1992). Modulation of cell morphology and adhesivity may be a direct consequence of specific perturbations within the actin cytoskeleton. The actin-based microfilament network undergoes dramatic reorganization after exposure of cells to transforming retroviruses (Altenburg et al., 1976; Wang and Goldberg, 1976), growth factors (Bockus and Stiles, 1984; Herman and Pledger, 1985; Ridley and Hall, 1992) and microfilament-disrupting agents such as the cytochalasins (Goodman and Miranda, 1978; Schliwa, 1982; Cooper, 1987). Such induced architectural changes frequently signal specific changes in gene expression and cell growth behavior. In normal rat kidney (NRK) cells, for example, actin reorganization (associated with transformation by retroviral oncogenes or cell shape-modulating drugs) is typically reflected in morphologic restructuring, in reduced substrate adhesion and in the reprogramming of gene expression (Ryan and Higgins, 1988, 1989, 1991; Higgins and Ryan, 1989a, 1989b; Higgins et al., 1991). One gene which appears particularly susceptible to shape-associated expression in the NRK cell system encodes the 52-kDa type-1 inhibitor of plasminogen activator [p52(PAI-1)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenburg, B.C., Via, D.P., and Steiner, S.H., 1976, Modification of the phenotype of murine sarcoma virus-transformed cells by sodium butyrate, Exp. Cell Res. 102: 223.

    Article  PubMed  CAS  Google Scholar 

  • Bellas, R.E., Bendori F., and Farmer, S.R., 1991, Epidermal growth factor activation of vinculin and β1-integrin gene transcription in quiescent 3T3 cells, J. Biol. Chem. 266: 12008.

    PubMed  CAS  Google Scholar 

  • Ben-Ze’ev, A., 1980, Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts, Cell. 21: 365.

    Article  CAS  Google Scholar 

  • Ben-Ze’ev, A., 1986, The relationship between cytoplasmic organization, gene expression and morphogenesis, TIBS. 11: 478

    CAS  Google Scholar 

  • Ben-Ze’ev, A., 1987, The role of changes in cell shape and contacts in the regulation of cytoskeleton expression during differentiation, J. Cell Sci. Suppl. 8: 293–312.

    CAS  Google Scholar 

  • Bissell, M.J., and Barcellos-Hoff, M.H.J., 1987, The influence of extracellular matrix on gene expression: is structure the message?, J. Cell Sci., Supp. 8: 327.

    CAS  Google Scholar 

  • Bockus, B.J. and Stiles, C.D., 1984, Regulation of cytoskeletal architecture by platelet-derived growth factor, insulin and epidermal growth factor, Exp. Cell Res. 153: 186.

    Article  PubMed  CAS  Google Scholar 

  • Burridge K., Turner, C.E., and Romer, L.H., 1992, Tyrosine phosphorylation of paxillin and ppl25FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly, J. Cell Biol. 119: 893.

    Article  PubMed  CAS  Google Scholar 

  • Carley, W.W., and Webb, W.W., 1983, F-actin aggregates may activate transformed cell surfaces, Cell Motil. 3: 383.

    Article  PubMed  CAS  Google Scholar 

  • Ciambrone, G.J. and McKeown-Longo, P.J., 1990, Plasminogen activator inhibitor type-1 stabilizes vitronectin-dependent adhesions in HT1080 cells, J. Cell Biol. 111: 2183.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, H.L., Feuerstein N., Noda M., and Bassin, R.H., 1985, Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes, J. Cell Biol. 5: 972.

    CAS  Google Scholar 

  • Cooper, J.A., 1987, Effects of cytochalasin and phalloidin on actin, J. Cell Biol. 105: 1473.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, S.L., Marcantonio, E.E., and Assoian, R.K., 1992, Cell attachment controls fibronectin and α5β1 integrin levels in fibroblasts, J. Biol. Chem. 267: 8186.

    PubMed  CAS  Google Scholar 

  • Dano K., Behrendt N., Lund, L.R., Ronne E., Pollanen J., Salonen, E.M., Stephens, R.W., Tapiovaara H., and Vaheri, A., 1989, “Cancer Metastasis. Molecular and Cellular Biology, Host Immune Responses and Perspectives for Treatment”, V. Schirrmacher and R. Schwarz-Albiez, eds., Springer, Verlag, Berlin.

    Google Scholar 

  • Dike, L.E. and Farmer, S.R., 1988, Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts, Proc. Natl. Acad. Sci. USA. 85: 6792.

    Article  PubMed  CAS  Google Scholar 

  • Ezzell, C., 1993, Just the fak(s) ma’am: Researchers investigate a new signalling enzyme, J. NIH Res., 5: 49.

    Google Scholar 

  • Farmer, S.R. and Dike, L.E., 1989, Cell shape and growth control:role of cytoskeleton-extracellular matrix interactions, in: “Cell shape determinants; Regulation and Regulatory Role”, W.D. Stein and F. Bronner, eds., Academic Press, New York, New York.

    Google Scholar 

  • Fernandez, J.L.R. and Ben-Ze’ev, A., 1989 Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine, Differentiation. 42: 65.

    Article  Google Scholar 

  • Folkman J., and Moscana, A., 1978, Role of cell shape in growth control, Nature. 273: 345.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, G. and Miranda, A., 1978, “Cytochalasins-Biochemical and Cell Biology Aspects”, S. Tannenbaum, ed., Elsevier, Amsterdam.

    Google Scholar 

  • Hayman, E.G., Engvall, E., and Ruoslahti, E., 1981, Concomitant loss of cell surface fibronectin and laminin from transformed rat kidney cells, J. Cell Biol. 88: 352.

    Article  PubMed  CAS  Google Scholar 

  • Herman, B. and Pledger, W.J., 1985, Platelet-derived growth factor-induced alteration in vinculin and actin distribution in BALB/c-3T3 cells, J. Cell Biol. 100: 1013.

    Article  Google Scholar 

  • Herschman, H.R., 1991, Primary response genes induced by growth factors and tumor promoters, Ann. Rev Biochem. 173: 93.

    Google Scholar 

  • Higgins, P.J. and Ryan, M.P., 1989a, Biochemical localization of the transfromation-sensitive 52 kDa (p52) protein to th substratum contact regions of cultured rat fibroblasts, Biochem J. 257: 173.

    PubMed  CAS  Google Scholar 

  • Higgins, P.J., Ryan, M.P., and Chaudhari, P., 1989b, Cytochalasin D-mediated hyperinduction of the substrate-associated 52-kilodalton protein p52 in rat kidney fibroblasts, J. Cell. Physiol. 139: 407.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, P.J., Ryan, M.P., Zehb, R., Gelehrter, T.D., and Chaudhari, P., 1990, p52 induction by cytochalasin D in rat kidney fibroblasts: homologies between p52 and plasminogen activator inhibitor type-1, J. Cell. Physiol. 143: 321.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, P.J., Chaudhari P., and Ryan, M.P., 1991, Cell-shape regulation and matrix protein p52 content in phenotypic variants of ras-transformed rat kidney fibroblasts, Biochem. J. 273: 651.

    PubMed  CAS  Google Scholar 

  • Higgins, P.J. and Ryan, M.P., 1991, p52(PAI-1) and actin expression in butyrate-induced flat revertants of ras-transformed rat kidney cells, Biochem. J. 279: 883.

    PubMed  CAS  Google Scholar 

  • Higgins, P.J., Ryan, M.P., and Ahmed, A., 1992, Cell-shape-associated transcriptional activation of the p52(PAI-1) gene in rat kidney cells, Biochem. J. 288: 1017.

    PubMed  CAS  Google Scholar 

  • Higgins, P.J. and Ryan, M.P., 1992, Identification of the 52 kDa cytoskeletal-like protein of cytochalasin D-stimulated normal rat kidney (NRK/CD) cells as substrate-associated glycoprotein p52 [plasminogenactivator inhibitor type-1 (PAI-1)], Biochem. J. 284: 433.

    PubMed  CAS  Google Scholar 

  • Hildebrand, J.D., Schaller, M.D., and Parsons, J.T., 1993, Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions, J. Cell Biol. 123: 993.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D., 1990, Fibronectin controls capillary endothelial cell growth by modulating cell shape, Proc. Natl. Acad. Sci. USA. 87: 3579.

    Article  PubMed  CAS  Google Scholar 

  • Ingber D., Prusty D., Frangioni, J.V., Cragoe, E.J., Lechene C., and Schwartz, M.A., 1990, Control of intracellular pH and growth by fibronectin in capillary endothelial cells, J. Cell Biol. 110: 1803.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D., 1991, Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis, J. Cell. Biochem. 47: 236.

    Article  PubMed  CAS  Google Scholar 

  • Laiho, M. and Keski-Oja, J., 1989, Growth factors in the regulation of pericellular proteolysis, Can. Res. 49: 2522.

    Google Scholar 

  • Larjava H., Lyons, J.G., Salo, T., Makela M., Koivisto L., Birkedal-Hansen H., Akiyama, S.K., Yamada K., and Heino, J., 1993, Anti-integrin antibodies induce type IV collagenase expression in keratinocytes, J. Cell. Physiol. 157. 190.

    Google Scholar 

  • Lau, L.F., and Nathans, D., 1987, Expression of a set of growth-regulated immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. USA. 84: 1182.

    Article  PubMed  CAS  Google Scholar 

  • Lipfert L., Haimovich B., Schaller, M.D., Cobb, B.S., Parsons, J.T., and Brugge, J.S., 1992, Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets, J. Cell Biol. 119: 905.

    Article  PubMed  CAS  Google Scholar 

  • Maness, P.F., 1981, Actin structure in fibroblasts-its possible role in transfromation and tumorigenesis, in: “Cell and Muscle Motility”, R.M. Dowben and J.W. Shaw, eds., Plenum Publishing, New York.

    Google Scholar 

  • Matsumura F., Lin, J.J.-C., Yamashiro-Matsumura S., Thomas, G.P., and Topp, W.C., 1983, Differential expression of tropomyosin forms in the microfilaments isolated from normal and transformed rat cultured cells, J. Biol. Chem. 258: 13594.

    Google Scholar 

  • McDonald, J.A., 1989, Matrix regualtion of cell shape and gene expression, Curr. Opin. Cell Biol. 1: 995.

    Article  PubMed  CAS  Google Scholar 

  • Pollanen J., Saksela O., Salonen, E-M., Andreasen P., Neilsen L., Dano K., and Vaheri, A., 1987, Distinct localization of urokinase-type plasminogen activator and its type-1 inhibitor under cultured human fibroblasts and sarcoma cells, J. Cell Biol. 104: 1085.

    Article  PubMed  CAS  Google Scholar 

  • Pollanen J., Stephens, R.W., and Vaheri, A., 1991, Directed plasminogen activation at the surface of normal and malignant cells, Adv. Can. Res. 57: 273–328.

    Article  CAS  Google Scholar 

  • Ridley, A. and Hall, A., 1992, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell. 70: 389.

    Article  PubMed  CAS  Google Scholar 

  • Ryseck, R.P., MacDonald-Bravo H., Zerial M., and Bravo, R., 1989, Coordinate induction of fibronectin, fibronectin receptor, tropomyosins, and actin genes in serum-stimulated fibroblasts, Exp. Cell Res. 180: 537.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, M.P. and Higgins, P.J., 1988, Cytoarchitecture of kirsten sarcoma virus-transformed rat kidney fibriblasts: butyrate-induced reorganization within the actin microfilament network, J. Cell. Physiol. 137: 25.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, M.P. and Higgins, P.J., 1989, Sodium-n-butyrate induces secretion and substrate accumulation of p52 in kirsten sarcoma virus-transformed rat kidney fibroblasts, Int. J. Biochem. 21: 31.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, M.P. and Higgins, P.J., 1993, Growth state-regulated expression of p52(PAI-1) in normal rat kidney cells, J. Cell. Physiol. 155: 376.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M., 1982, Action of cytochalasin D on cytoskeletal networks, J. Cell Biol. 92: 79–81.

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman, B.M. and Farmer, S.R., 1982, Decrease in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes, Cell. 29: 53

    Article  PubMed  CAS  Google Scholar 

  • Stickel, S.K., and Wang, Y-l., 1987, Alpha-actinin-containing aggregates in transformed cells are highly dynamic structures, J. Cell Biol. 104: 1521

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y-l., and Golgberg, A.R., 1976, Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus, Proc. Natl. Acad. Sci. USA. 73: 4056.

    Google Scholar 

  • Watt, F.M., 1986, The extracellular matrix and cell shape, TIBS. 11: 482.

    CAS  Google Scholar 

  • Werb Z., Tremble, P.M., Behrendtsen O., Crowley E., and Damsky, C.H., 1989, Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression, J. Cell Biol. 109: 877.

    Article  PubMed  CAS  Google Scholar 

  • Wahrman, M.Z., Gagnier, S.E., Kobrin, D.R., Higgins, P.J., and Augenlicht, L.H., 1985, Cellular and molecular changes in 3T3 cell transformed spontaneously or by DNA transfection, Tumour Biol. 6: 41.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ryan, M.P., Higgins, P.J. (1994). Control of p52(PAI-1) Gene Expression in Normal and Transformed Rat Kidney Cells: Relationship between p52(PAI-1) Induction and Actin Cytoarchitecture. In: Estes, J.E., Higgins, P.J. (eds) Actin. Advances in Experimental Medicine and Biology, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2578-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2578-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6102-2

  • Online ISBN: 978-1-4615-2578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics