Skip to main content

Combining Electron Microscopy and X-Ray Crystallography Data to Study the Structure of F-Actin and its Implications for Thin-Filament Regulation In Muscle

  • Chapter
Book cover Actin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 358))

Abstract

Actin filaments (F-actin) are found in nearly all eukaryotic cells as elements of the cytoskeleton. They also play a central role in various types of contractility, motility and transport. F-actin is a helical polymer composed of identical globular subunits, each of which contains 375 amino acids. The atomic structure of the monomer (G-actin; 42 kD) has recently been determined from a complex of the monomer and DNase (Kabsch et al., 1990). The monomer structure, shown in figure 1, has two major domains (historically these were termed “large” and “small”, but it is now known that they are of nearly the same size) which are each divided into two subdomains. Subdomain 1 contains the N- and C-termini of the polypeptide chain. The prominent cleft between the two major domains is the site of nucleotide binding. Knowledge of the precise arrangement of the actin subunits within F-actin would be helpful in understanding the function of F-actin at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bivin, D.B., Stone, D.B., Schneider, D.K., and Mendelson, R.A, 1991, Cross-helix separation of tropomyosin as determined by neutron scattering, Biophys. J. 59: 880.

    Article  PubMed  CAS  Google Scholar 

  • Bremer A., Millonig, R.C., Sütterlin, R., Engel A., Pollard, T.D., and Aebi, U., 1991, The structural basis for the intrinsic disorder of the actin filament: The “lateral slipping” model, J. Cell. Biol. 115: 689.

    Article  PubMed  CAS  Google Scholar 

  • DeRosier, D.J. and Moore, P.B., 1970, Reconstruction of three dimensional images from electron micrographs of structures with helical symmetry, J. Mol Biol. 52: 355.

    Article  PubMed  CAS  Google Scholar 

  • Egelman, E.H. and DeRosier, D., 1983, A model for F-actin derived from image analysis of isolated filaments (appendix), J. Mol Biol. 166: 623.

    Article  CAS  Google Scholar 

  • Egelman, E.H., 1992, Two key questions raised by an atomic model for F-actin, Curr. Opin. Struct. Biol. 2: 286.

    Article  CAS  Google Scholar 

  • Elzinga, M. and Phelan, J.J., 1984, F-actin is intermolecularly cross-linked by N,N′-p-phenylene-dimaleimide through lysine-191 and cysteine-374, Proc. Natl Acad. Sci. USA 81: 6599.

    Article  PubMed  CAS  Google Scholar 

  • Ferrin, T.E., Huang, C C., Jarvis, L.E., and Langridge, R., 1988, The Midas display system, J. Mol Graphics 6: 13.

    Article  CAS  Google Scholar 

  • Geeves, M.A. and Halsall, D.J., 1987, Two step ligand binding and cooperativity, Biophys. J. 52: 215.

    Google Scholar 

  • Hanson, J., 1967, Axial period of actin filaments, Nature (Lond.) 213: 353.

    Article  CAS  Google Scholar 

  • Hartt, J. E. and Mendelson, R.A., 1980, X-Ray scattering of F-actin and myosin subfragment 1 complex, Fed. Proc. 39: 1728.

    Google Scholar 

  • Hegyi G., Michel H., Shabanowitz J., Hunt, D.F., Chatterjie, N., Healy-Louie, G., and Elzinga, M., 1992, Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by n-(4-azidobenzoyl)-putrescine, Prot. Sci. 1: 132.

    Article  CAS  Google Scholar 

  • Holmes, K.C., Popp, D., Gebhard, W. and Kabsch, W. 1990, Atomic model of the actin filament, Nature (Lond.) 347: 44.

    Article  CAS  Google Scholar 

  • Huxley, H.E., 1972, Structural changes in the actin-and myosin-containing filaments during contraction, Cold Spring Harbor Symp. Quant. Biol. 37: 361.

    Article  Google Scholar 

  • Kabsch, W., Mannherz, H.G., Suck, D., Oai E., and Holmes, K.H., 1990, Atomic structure of actin: DNase I complex, Nature (Lond.) 347: 37.

    Article  CAS  Google Scholar 

  • Kasprzak, A.A., Takashi, R., and Morales, M.F., 1988, Orientation of actin monomer in the F-actin filament: radial coordinate of glutamine-41 and effect of myosin subfragment 1 binding on the monomer orientation, Biochem. 27: 4512.

    Article  CAS  Google Scholar 

  • Lehrer, S.S. and Morris, E.P., 1984, Dual effects of tropomyosin and tropomyosin-troponin on acto-myosin subfragment 1 ATPase, J. Biol. Chem. 257: 8073.

    Google Scholar 

  • Matsudaira P., Bordas J., and Koch, M.H., 1987, Synchrotron x-ray diffraction studies of actin structure during polymerization, Proc. Natl. Acad. Sci. USA 84: 3151.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, R.A., Gebhard, W., Holmes, K., Kabsch, W., Suck, D., Couch, J., Morris, E. and O’Brien, E., 1984, Fitting the actin monomer into the actin helix: a combination of X-ray diffraction and electron microscope data, Biophys. J. 45: 391a.

    Google Scholar 

  • Mendelson, R.A., Stone, D.B., Timmins, P.A., and Johnson, E.R., 1991, Results of preliminary studies of tropomyosin radial movement using neutron scattering, Biophys. J. 59: 219a.

    Google Scholar 

  • Milligan, R.A. and Flicker, P.F., 1987, Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy, J. Cell Biol. 105: 29.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, R.A., Whittaker, M. and Safer, D., 1990, Molecular structure of F-actin and location of surface binding sites, Nature (Lond.) 348: 217.

    Article  CAS  Google Scholar 

  • Morris, E.P., 1979, The effects of troponin components on the structure and activity of thin filaments, Ph. D. thesis, University of London.

    Google Scholar 

  • O’Brien, E.J., Couch, J., Johnson, G.R.P., and Morris, E.P., 1983, Structure of actin and the thin filament, in: “Actin: Its Structure and Function in Muscle and Non-muscle Cells” C. Dos Remedios and J. Barden, editors, Academic Press, Sydney, Australia.

    Google Scholar 

  • Parry, D.A.D. and Squire, J.M., 1973, Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles, J. Mol. Biol. 75: 33.

    Article  PubMed  CAS  Google Scholar 

  • Popp, D. and Holmes, K.C., 1992, X-ray diffraction studies on oriented gels of vertebrate smooth muscle thin filaments, J. Mol. Biol. 224: 65.

    Article  PubMed  CAS  Google Scholar 

  • Schutt, C.E., Lindberg, U., Myslik, J., and Strauss, N., 1989, Molecular packing in profilin: actin crystals and its implications, J. Mol. Biol. 209: 735.

    Article  PubMed  CAS  Google Scholar 

  • Schutt, C.E. and Lindberg, U., 1992, Actin as the generator of tension during muscle contraction, Proc. Natl Acad. Set USA 89: 319.

    Article  CAS  Google Scholar 

  • Suck D., Kabsch W., and Mannherz, H.G., 1981, Three-dimensional structure of the complex of skeletal muscle actin and bovine pancreatic DNase I at 6 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 78: 4319.

    Article  PubMed  CAS  Google Scholar 

  • Taylor D., Reidler L., Spudich, J.A., and Stryer, L., 1981, Detection of actin assembly by fluorescence energy transfer, J. Cell Biol. 89: 362.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J., Cooper J., Seymour J., and Egelman, E.H., 1986, Cryo-electron microscopy and three-dimensional reconstruction of actin filaments, J. Microsc. 141: 349.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mendelson, R., Morris, E. (1994). Combining Electron Microscopy and X-Ray Crystallography Data to Study the Structure of F-Actin and its Implications for Thin-Filament Regulation In Muscle. In: Estes, J.E., Higgins, P.J. (eds) Actin. Advances in Experimental Medicine and Biology, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2578-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2578-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6102-2

  • Online ISBN: 978-1-4615-2578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics