Actin pp 147-157 | Cite as

Changes in Adhesion Plaque Protein Levels Regulate Cell Motility And Tumorigenicity

  • Avri Ben-Ze’ev
  • José Luis Rodríguez Fernández
  • Ursula Glück
  • Daniela Salomon
  • Benjamin Geiger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 358)


Cell adhesion to neighboring cells and to the extracellular matrix (ECM) plays a major role in cell and tissue morphogenesis (Edelman, 1992; Takeichi, 1991; Hynes, 1992). These complex, adhesion-related cellular processes are mediated through transmembrane contact receptors of the cadherin and integrin families of receptors (Takeichi, 1991; Hynes, 1992). In the cytoplasmic domain, these receptors interact with cytoskeletal plaque proteins such as vinculin, talin and α-actinin which anchor the microfilament system to junctional areas in adherens type junctions (AJ) in adhesion plaques, and to α and β catenin and plakoglobin in cell-cell AJ (Burridge et al., 1988; Geiger and Ginsberg, 1991; Geiger et al., 1992). The cascade of molecular interactions which links the outside to the inside of the cell defines cell shape and motility, and also has a function in signal transduction which results in effects on cell growth, differentiation, and gene expression (Ben-Ze’ev, 1991; 1992; Schwartz, 1992; Haskill and Juliano, 1993). Signaling through adhesion plaques is suggested to occur through changes in tyrosine phosphorylation (Burridge et al., 1992; Volberg et al., 1992). Moreover, recent studies have demonstrated that the changes in tyrosine phosphorylation of a cytoplasmic adhesion plaque tyrosine kinase (p125FAK) is common to adhesion related signaling and to growth factor, cytokine and neuropeptide induced signaling (Zachary and Rozengurt, 1992), and that tyrosine phosphorylation of p125FAK is constitutively activated in oncogene-transformed cells (Guan and Shalloway, 1992). These results suggest a convergence, in adhesion plaques, of signals transduced by cytokines, oncogenes and adhesion.


Tyrosine Phosphorylation Adhesion Plaque Transfected Clone Tumorigenic Ability Syngeneic Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belkin, A.M., O.I. Omatsky, A.E. Kabanov, M.A. Glukhova, and V.E. Koteliansky. (1988). Diversity of vinculin/meta-vinculin in human tissues and cultivated cells. J. Biol. Chem. 263: 14631–14635.Google Scholar
  2. Bellas R. E., R. Bendori, and S. R. Farmer. (1991). Epidermal growth factor activation of vinculin and β-integrin gene transcription in quiescent Swiss 3T3 cells. J. Biol. Chem. 266: 12008–12014.PubMedGoogle Scholar
  3. Bendori R., D. Salomon, and B. Geiger. (1987). Contact dependent regulation of vinculin expression in cultured fibroblasts: a study with vinculin specific cDNA probes. EMBO J. 6: 2897–2905.PubMedGoogle Scholar
  4. Ben-Ze’ev, A. (1985). The cytoskeleton of cancer cells. Biochim. Biophys. Acta. 780: 197–212.Google Scholar
  5. Ben-Ze’ev, A. (1991). Animal cell shape changes and gene expression. BioEssays 13: 207–212.CrossRefGoogle Scholar
  6. Ben-Ze’ev, A. (1992). Cytoarchitecture and signal transduction. Crit. Rev. Eukaryotic Gene Exp. 2: 265–281.Google Scholar
  7. Ben-Ze’ev A., and A. Amsterdam. (1987). In vitro regulation of granulosa cell differentiation: involvement of cytoskeletal protein expression. J. Biol. Chem. 262: 5366–5376.Google Scholar
  8. Ben-Ze’ev A., R. Reiss, R, Bendori, and B. Gorodecki. (1990). Transient induction of vinculin gene expression in 3T3 fibroblasts stimulated by serum growth factors. Cell Regul. 1: 621–636.Google Scholar
  9. Burridge K., K. Fath, T. Kelly, G. Nuckolls, and C. Turner. (1988). Focal Adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell. Biol. 4: 487–525.PubMedCrossRefGoogle Scholar
  10. Burridge K., C. E. Turner, and L. H. Romer. (1992). Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119: 893–903.PubMedCrossRefGoogle Scholar
  11. Edelman, G. M. (1992). Mediation and inhibition of cell adhesion by morphoregulatory molecules. Cold Spring Harb. Symp. Quant. Biol. LVII 317–325.CrossRefGoogle Scholar
  12. Geiger B., and D. Ginsberg. 1991. The cytoplasmic domain of adherens-type junctions. Cell Motil. Cytoskel. 20: 1–6.CrossRefGoogle Scholar
  13. Geiger B., O. Ayalon, D. Ginsberg, T. Volberg, J. L. Rodríguez Fernández, Y. Yarden, and A. Ben-Ze’ev. (1992). Cytoplasmic control of cell-adhesion. Cold Spring Harb. Symp. Quant, Biol. LVII 631–642.CrossRefGoogle Scholar
  14. Glück U., J. L. Rodríguez Fernández, R. Pankov, and A. Ben-Ze’ev. (1992). Regulation of adherens junction protein expression in growth-activated 3T3 cells and in regenerating liver. Exp. Cell. Res. 202: 477–486.PubMedCrossRefGoogle Scholar
  15. Glück U., D. J. Kwiatkowski, and A. Ben-Ze’ev. 1993. Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with α-actinin cDNA. Proc. Natl. Acad. Sci. USA 90: 383–387.PubMedCrossRefGoogle Scholar
  16. Guan, J-L., and D. Shalloway. (1992). Regulation of focal adhesion associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358: 690–692.PubMedCrossRefGoogle Scholar
  17. Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25.PubMedCrossRefGoogle Scholar
  18. Juliano R. L., and S. Haskill. 1993. Signal transduction from the extracellular matrix. J. Cell Biol. 120: 577–585.PubMedCrossRefGoogle Scholar
  19. Kreis T. E., Z. Avnur, J. Schlessinger, and B. Geiger. (1984). Dynamic properties of cytoskeletal proteins in focal contacts, In Molecular Biology of the Cytoskeleton. G. Borisy, D. Cleveland, and D. Murphy, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 45–57.Google Scholar
  20. Matsumura F., and Yamashiro-Matsumura, S. (1986). Tropomyosin in cell transformation. Cancer Rev. 6: 21–39.Google Scholar
  21. Moiseyeva E. P., P. A. Weller, N. I. Zhidkova, E. B. Corben, B. Patel, I. Jasinska, V. E. Koteliansky, and D. R. Critchley. (1993). Organization of the human gene encoding the cytoskeletal protein vinculin and the sequence of the vinculin promoter. J. Biol. Chem. 268: 4318–4325.PubMedGoogle Scholar
  22. Otey, C.A., F. M. Pavalko, and K. Burridge. (1990). An interaction between a-actinin and the b1 integrin subunit in vitro. J. Cell Biol. 111: 721–729.PubMedCrossRefGoogle Scholar
  23. Pollack, R., M. Osborn, and K. Weber. (1975). Patterns of organization of actin and myosin in normal and transformed cells. Proc. Natl. Acad. Sci. USA 72: 994–998.PubMedCrossRefGoogle Scholar
  24. Raz A., and A. Ben-Ze’ev. (1987). Cell contact and architecture of malignant cells and their relationship to metastasis. Cancer Met. Rev. 6: 3–21.CrossRefGoogle Scholar
  25. Raz A., M. Zöller, and A. Ben-Ze’ev. (1986). Cell configuration and adhesive properties of metastasizing and nonmetastasizing Bsp73 rat adenocarcinoma cells. Exp. Cell Res. 162: 127–141.PubMedCrossRefGoogle Scholar
  26. Rodríguez Fernández J. L., and A. Ben-Ze’ev. (1989). Regulation of fibronectin, integrin and cytoskeletal expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation 42: 65–74.PubMedCrossRefGoogle Scholar
  27. Rodríguez Fernández J. L., B. Geiger, D, Salomon, I. Sabanay, M. Zöller, and A. Ben-Ze’ev. (1992a) Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA. J. Cell Biol. 119: 427–438.PubMedCrossRefGoogle Scholar
  28. Rodríguez Fernández J. L., B. Geiger, D. Salomon, and A. Ben-Ze’ev. (1992b). Overexpression of vinculin suppresses cell motility in Balb/C 3T3 cells. Cell Motil. Cytosk. 22: 127–134.CrossRefGoogle Scholar
  29. Rodríguez Fernández J. L., Geiger B., Salomon D., and Ben-Ze’ev, A. (1993). Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage dependent growth of 3T3 cells. J. Cell Biol. in press.Google Scholar
  30. Schwartz, M. A. (1992). Transmembrane signaling by integrins. Trends Cell Biol. 2: 304–308.PubMedCrossRefGoogle Scholar
  31. Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455.PubMedCrossRefGoogle Scholar
  32. Ungar F., B. Geiger, and A. Ben-Ze’ev. (1986). Cell contact and shape dependent regulation of vinculin synthesis in cultured fibroblasts. Nature 319: 787–791.PubMedCrossRefGoogle Scholar
  33. Vandekerckhove J., G. K. Bauw, G. Vancompernolle, B. Honore, and J. Celis (1990). Comparative two dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epthelial cells. J. Cell Biol. 11: 95–102.CrossRefGoogle Scholar
  34. Volberg T., Y. Zick, R. Dror, I, Sabanay, C. Gilon, A. Levitzki, and B. Geiger. (1992). The effect of tyrosine-specific protein phosphorylation on the assembly of adherens type junctions. EMBO J. 11: 1733–1742.PubMedGoogle Scholar
  35. Zachary I., and E. Rozengurt. (1992). Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 71: 891–894.PubMedCrossRefGoogle Scholar
  36. Zieske J. D., G. Bukusoglu, and I. K. Gipson. (1989). Enhancement of vinculin synthesis by migrating stratified epithelium. J. Cell Biol. 109: 571–576.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Avri Ben-Ze’ev
    • 1
  • José Luis Rodríguez Fernández
    • 1
  • Ursula Glück
    • 1
  • Daniela Salomon
    • 2
  • Benjamin Geiger
    • 2
  1. 1.Department of Molecular Genetics and VirologyWeizmann Institute of ScienceRehovotIsrael
  2. 2.Chemical ImmunologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations