Actin pp 133-145 | Cite as

Actin Filament Dynamics in Cell Motility

  • Julie A. Theriot
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 358)


The motility of individual animal cells is important for a wide variety of basic biological processes including rearrangements during embryonic development, neurite outgrowth, wound healing, inflammation, and cancer metastasis. The actin cytoskeleton in animal cells must also drastically rearrange in a cell-cycle dependent manner in order to perform cytokinesis. Actin microfilament dynamics are intimately involved in all of these common types of cell motility, but the mechanisms of force transduction and movement are still poorly understood.


Actin Filament Actin Polymerization Comet Tail Actin Monomer Filament Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie M., Heaysman, J. E. M., and Pegrum, S. M., 1970a, The locomotion of fibroblasts in culture. II. “Ruffling.” Exp. Cell Res. 59: 393–398.PubMedCrossRefGoogle Scholar
  2. Abercrombie M., Heaysman, J. E. M., and Pegrum, S. M., 1970b, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell Res. 62: 389–398.PubMedCrossRefGoogle Scholar
  3. Blikstad I., Markey F., Carlsson L., Persson T., and Lindberg, U., 1978, Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I, Cell 15: 935–943.PubMedCrossRefGoogle Scholar
  4. Buβ, F., Temm-Grove, C., Henning S., and Jockusch, B. M., 1992, Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments, Cell Motil. Cytoskel. 22: 51–61.CrossRefGoogle Scholar
  5. Cao, L.-g., Babcock, G. G., Rubenstein P. A., and Wang, Y.-l., 1992, Effects of profilin and profilactin on actin structure and function in living cells, J, Cell Biol. 117: 1023–1029.PubMedCrossRefGoogle Scholar
  6. Cox D., Condeelis J., Wessels D., Soil D., Kern H., and Knecht, D. A., 1992, Targeted disruption of the ABP-120 gene leads to cells with altered motility, J. Cell Biol. 116: 943–955.PubMedCrossRefGoogle Scholar
  7. Dabiri G. A., Sanger J. M., Portnoy, D. A. and Southwick, F. S., 1990, Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly, Proc. Natl. Acad. Sci. USA 87: 6068–6072.PubMedCrossRefGoogle Scholar
  8. DeLozanne A., and Spudich, J. A., 1987, Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination, Science 236: 1086–1091.CrossRefGoogle Scholar
  9. Drenckhahn D., and Pollard, T. D., 1986, Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules, J. Biol. Chem. 261: 12754–12758.PubMedGoogle Scholar
  10. Fisher G. W., Conrad P. A., DeBiasio R. L., and Taylor, D. L., 1988, Centripetal transport of cytoplasm, actin and the cell surface in lamellipodia of fibroblasts, Cell Motil. Cytoskel. 11: 235–247.CrossRefGoogle Scholar
  11. Forscher P., and Smith, S. J., 1988, Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone, J. Cell Biol. 107: 1505–1516.PubMedCrossRefGoogle Scholar
  12. Gellin B. G., and Broome, C. V., 1989, Listeriosis, JAMA 261: 1313–1320.PubMedCrossRefGoogle Scholar
  13. Goldschmidt-Clermont P. J., Machesky L. M., Doberstein S. K., and Pollard, T. D., 1991, Mechanism of the interaction of platelet profilin with actin, J. Cell Biol. 113: 1081–1089.PubMedCrossRefGoogle Scholar
  14. Goldschmidt-Clermont P. J., Furman M. I., Wachsstock D., Safer D., Nachmias V. T., and Pollard, T. D., 1992a, The control of actin nucleotide exchange by thymosin β4 and profilin. A potential regulatory mechanism for actin polymerization in cells, Mol. Biol. Cell 3: 1015–1024.PubMedGoogle Scholar
  15. Goldschmidt-Clermont P. J., Theriot J. A., Tomaselli G. F., and Finkel, T., 1992b, Profilin overexpression stabilizes actin filament bundles, Circulation 86: I–178.Google Scholar
  16. Knecht D. A., and Loomis, W. F., 1987, Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum, Science 236: 1081–10Google Scholar
  17. Lewis A. K., and Bridgman, P. C., 1992, Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell Biol. 119: 1219–1243.PubMedCrossRefGoogle Scholar
  18. Mitchison, T. J., 1988, Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence, J. Cell Biol. 109: 637–652.CrossRefGoogle Scholar
  19. Okabe S., and Hirokawa, N., 1991, Actin dynamics in growth cones, J. Neurosci. 11: 1918–1929.PubMedGoogle Scholar
  20. Okabe, S. and Hirokawa, N., 1992, Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons, J. Cell Biol. 117: 105–120.PubMedCrossRefGoogle Scholar
  21. Oster G. F., and Perelson, A. S., 1987, The physics of cell motility, J. Cell Sci. Suppl. 8: 35–54.PubMedGoogle Scholar
  22. Pollard, T. D., 1990, Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments, J. Cell Biol. 103: 2747–2754.CrossRefGoogle Scholar
  23. Reinsch S. S., Mitchison T. J., and Kirschner, M., 1991, Microtubule polymer assembly and transport during axonal elongation, J. Cell Biol. 115: 365–379.PubMedCrossRefGoogle Scholar
  24. Safer D., Golla R., and Nachmias, V. T., 1990, Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets, Proc. Natl. Acad. Sci. USA 87: 2536–2540.PubMedCrossRefGoogle Scholar
  25. Sanders, M. C., and Wang, Y.-l., 1990, Exogenous nucleation sites fail to induce detectable polymerization of actin in living cells, J. Cell Biol. 110: 359–365.PubMedCrossRefGoogle Scholar
  26. Sanger J. M., Sanger J. W., and Southwick, F. S., 1992, Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes, Infect. Immun. 60: 3609–3619.PubMedGoogle Scholar
  27. Shariff A., and Luna, E. J., 1992, Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes, Science 256: 245–247.PubMedCrossRefGoogle Scholar
  28. Small, J. V., 1981, Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91: 695–705.PubMedCrossRefGoogle Scholar
  29. Theriot J. A., and Mitchison, T. J., 1991, Actin microfilament dynamics in locomoting cells, Nature 352: 126–131.PubMedCrossRefGoogle Scholar
  30. Theriot J. A., and Mitchison, T. J., 1992a, The nucleation-release model of actin filament dynamics in cell motility, Trends Cell Biol. 2: 219–222.PubMedCrossRefGoogle Scholar
  31. Theriot J. A., and Mitchison, T. J., 1992b, Comparison of actin and cell surface dynamics in motile fibroblasts, J. Cell Biol. 118: 367–377.CrossRefGoogle Scholar
  32. Theriot J. A., Mitchison T. J., Tilney L. G., and Portnoy, D. A., 1992, The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization, Nature 357: 257–260.PubMedCrossRefGoogle Scholar
  33. Tilney L. G., and Portnoy, D. A., 1989, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J. Cell Biol. 109: 1597–1608.PubMedCrossRefGoogle Scholar
  34. Wang, Y.-l., 1985, Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling, J. Cell Biol. 101: 597–602.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Julie A. Theriot
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations