Actin pp 123-130 | Cite as

Cytoskeleton, Motile Structures and Macromolecular Crowding

  • Enrico Grazi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 358)


We descrive the effect of macromolecular crowding on the associations of the cytoskeletal and of the motile structures. These effects are due to preferential interactions and have been treated theoretically by many authors1,2,3,4. Occasionally, preferential interactions are taken into account in the study of the biological reactions, their role, however, is not yet adequately recognized.


Actin Filament Preferential Interaction Actin Bundle FEBS Letter Binding Isotherm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.G. Ogston, Some thermodynamic relationships in ternary systems, with special reference to the properties of systems containing hyaluronic acid and protein, Archiv. Biochem. Biophys. Suppl 1: 39 (1962).Google Scholar
  2. 2.
    T. Arakawa and S.N. Timasheff, Mechanism of poly(ethylene glycol) interaction with proteins, Biochemistry 24: 6756 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    A.P. Minton, Excluded volume as a determinant of macromolecular structure and reactivity, Biopolymers 20: 2093 (1981).CrossRefGoogle Scholar
  4. 4.
    J.C. Lee, K. Gekke, and S. Timasheff, Measurements of preferential solvent interactions by densimetric techniques, Methods Enzymol. 61: 26 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    A.P. Minton and J. Wilf, Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 20: 4821 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    S.B. Zimmermann and B.H. Pfeiffer, Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or Escherichia coli, Proc. Natl Acad. Sci. USA 80: 5852 (1983).CrossRefGoogle Scholar
  7. 7.
    R.L. Low, J.M. Kaguni, and A. Kornberg, Potent catenation of supercoiled and gapped DNA circles by topoisomerase I in the presence of a hydrophilic polymer, J. Biol. Chem. 259: 4576 (1984).PubMedGoogle Scholar
  8. 8.
    A.P. Minton, G. Craig Colclasure, and J.C. Parker, Model for the role of macromolecular crowding in regulation of cellular volume, Proc. Natl. Acad. Sci. USA 89: 10504 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Shearwin, C. Nanhua, and C. Masters, The influence of molecular crowding on the binding of glycolytic enzymes to cytoskeletal structures, Biochem. Int. 19: 723 (1989).PubMedGoogle Scholar
  10. 10.
    SJ. Harris and D.J. Winzor, Effect of thermodynamic nonideality on the subcellular distribution of enzymes: adsorption of aldolase to muscle myofibrils, Archiv. Biochem. Biophys. 243: 598 (1985).CrossRefGoogle Scholar
  11. 11.
    R.L. Tellam, M.J. Sculley, L.W. Nichol, and P.R. Wills, The influence of polyethylene glycol) 6000 on the properties of skeletal muscle actin, Biochem.J. 213: 651 (1983).PubMedGoogle Scholar
  12. 12.
    D. Drenckhahn and T.D. Pollard, Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules, J. Biol. Chem. 261: 12754 (1986).PubMedGoogle Scholar
  13. 13.
    A. Suzuki, M. Yamazaki, and T. Ito, Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress, Biochemistry 28: 6513 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Grinstein and J.K. Foskett, Ionic mechanism of cell volume regulation in leukocytes, Annu. Rev. Physiol 52: 399 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    M.P. Wymann, P. Kernen, T. Bengtsson, T. Andersson, M. Baggiolini, and D.A. Derenleau, Corresponding oscillations in neutrophil shape and filamentous actin content, J. Biol Chem. 265: 619 (1990).PubMedGoogle Scholar
  16. 16.
    L.G. Tilney and S. Inoue, Acrosomal reaction of thyone sperm. II. the kinetics and possible mechanism of acrosomal process elongation, J. Cell Biol. 93: 820 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    J.L. Lebovitz, E. Helfand, and E. Prestgaard, Scaled particle theory of fluid mixtures, J. Chem. Phys. 43: 774 (1965).CrossRefGoogle Scholar
  18. 18.
    E. Grazi, G. Trombetta, and M. Guidoboni, Divergent effects of filamin and tropomyosin on actin filaments bundling, Biochem. Biophys. Res. Communs. 167: 1109 (1990).CrossRefGoogle Scholar
  19. 19.
    P. Cuneo, E. Magri, A. Verzola, and E. Grazi, Macromolecular crowding is a primary factor in the organization of the cytoskeleton, Biochem. J. 281: 507 (1992).PubMedGoogle Scholar
  20. 20.
    K. Wang and S.J. Singer, Interaction of filamin with F-actin in solution, Proc. Nail Acad. Sci. USA 74: 2021 (1977).CrossRefGoogle Scholar
  21. 21.
    J.W. Small, G. Rinnerthaler, and H. Hinnsen, Organization of actin meshworksin cultured cells: the leading edge, Cold Spring Harbour Symp. Quant. Biol. 46: 599 (1982).CrossRefGoogle Scholar
  22. 22.
    E. Lazarides, Two general classes of cytoplasmic actin filaments in tissue culture cells: the role of tropomyosin, J. Supramol. Struct. 5: 531 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    C.J. Moody, S.B. Marston, and C.W.J. Smith, Bundling of aorta caldesmon isnotrelated to is regulatory function, FEBS Letters 191: 107 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Husai-Chishti, A. Levin, and D. Branton, Abolition of actin bundling by phosphorylation of human erythrocyte protein 4.9, Nature 334: 718 (1988).CrossRefGoogle Scholar
  25. 25.
    N.W. Ikebuchi and D.M. Waisman, Calcium-dependent regulation of actin filament bundling, J. Biol. Chem. 265: 3392 (1990).PubMedGoogle Scholar
  26. 26.
    M. Bahler and P. Greengard, Synapsin I bundles F-actin in a phosphorylation-dependent manner, Nature 326: 704 (1987).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Sobue, Y. Muramoto, M. Fujita, and S. Kakiuchi, Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin, Proc. Natl Acad. Sci. USA 78: 5652 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    K. Sobue, K. Morimoto, K. Kanda, K. Maruyama, and S. Kakiuchi, ReconstitutionofCa2+-sensitive gelation of actin filaments with filamin, caldesmon and calmodulin, FEBS Letters 138: 289 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Grazi, P. Cuneo, and A. Cataldi, The control of cellular shape and motility. Mg2+ and tropomyosin regulate the formation and the dissociation of microfilament bundles, Biochem. J. 288: 727 (1992).PubMedGoogle Scholar
  30. 30.
    A. Romani and A. Scarpa, Regulation of cell magnesium, Archiv. Biochem. Biophys. 298: 1 (1992).CrossRefGoogle Scholar
  31. 31.
    A. Cittadini and A. Scarpa, Intracellular Mg2+ homeostasis of Ehrlich ascites tumor cells, Archiv. Biochem. Biophys. 227: 202 (1983).CrossRefGoogle Scholar
  32. 32.
    E. Murphy, C.C. Freudenrich, L.A. Levy, and R.E. London, Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra, Proc. Natl. Acad. Sci. USA 86: 2981 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Holmsen, H.J. Day, and C.A. Setkowsky, Secretory mechanisms. Behaviour ofadenine nucleotides during the platelet release reaction induced by adenosine diphosposphate and adrenaline, Biochem. J. 129: 67 (1972).PubMedGoogle Scholar
  34. 34.
    V. Pribluda, F. Laub, and A. Rotman, The state of actin in activated human platelets, Eur. J. Biochem. 116: 293 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    D.E. Goll, A. Suzuki, J. Temple, and G.R. Holmes, Studies on purified alpha-actinin. Effect of temperature and tropomyosin on the alpha-actinin — F-actin interaction, J. Mol. Biol. 67: 469 (1972).CrossRefGoogle Scholar
  36. 36.
    B.M. Jockusch and G. Isenberg, Interaction of alpha-actinin and vinculin with actin. Opposite effects on filament network formation, Proc. Natl. Acad. Sci. USA 78: 3005 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    J.P. Bennett, K. Scott Zaner, and T.P. Stossel, Isolation and properties of macrophage alpha-actinin. Evidence that it is not an actin gelling protein, Biochemistry 23: 5081 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Ohtaki, S. Tsukita, N. Mimura, S. Tsukita, and A. Asano, Interaction of actinogelin with actin. No nucleation but high gelation activity, Eur. J. Biochem. 150: 609 (1985).CrossRefGoogle Scholar
  39. 39.
    F. Landon, Y. Gache, H. Touitou, and A. Olomucki, Properties of two isoforms of human blood platelet alpha-actinin, Eur. J. Biochem. 153: 231 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    E. Grazi, G. Trombetta, and M. Guidoboni, Microfilament gel rigidity cooperaiesnegatively with the binding of actin gelling proteins, Biochem. Int. 21: 633 (1990).PubMedGoogle Scholar
  41. 41.
    E. Grazi, G. Trombetta, and M. Guidoboni, Binding of alpha-actinin to F-actin or to tropomyosin F-actin is a function of both alpha-actinin concentration and gel structure, J. Muscle Res. Cell Mot. 12: 579 (1991).CrossRefGoogle Scholar
  42. 42.
    E. Grazi, G. Trombetta, E. Magri, and P. Cuneo, The actin gelling activity of chicken gizzard alha-actinin at physiological temperature is triggered by water sequestration, FEBS Letters 272: 149 (1990).PubMedCrossRefGoogle Scholar
  43. 43.
    E. Grazi, P. Cuneo, E. Magri, and C. Schwienbacher, Preferential binding ofalpha-actinin to actin bundles, FEBS Letters 314: 348 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    E. Lazarides, Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68: 202 (1976).PubMedCrossRefGoogle Scholar
  45. 45.
    T.D. Pollard and J.A. Cooper, Actin and actin-binding proteins. A critical evaluation of mechanisms and functions, Ann. Rev. Biochem. 55: 987 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    P. A. Janmey and T.P. Stossel, Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate, Nature 325: 362 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    E. Grazi, E. Magri, P. Cuneo, and A. Cataldi, The control of cellular motility and the role of gelsolin, FEBS Letters 295: 163 (1991).PubMedCrossRefGoogle Scholar
  48. 48.
    J.M. Scholey, K.A. Taylor, and J. Kendrich Jones, Regulation of nonmuscle myosin assembly by calmodulin-dependent light chain kinase, Nature 287: 233 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    F.T. Ashton, A. V. Somlyo, and A.P. Somlyo, The contractile apparatus of vascular smooth muscle: Intermediate high voltage stereo electron microscopy, J. Mol Biol. 98: 17 (1975).PubMedCrossRefGoogle Scholar
  50. 50.
    A.V. Somlyo, T.M. Butler, M. Bond, and A.P. Somlyo, Myosin filaments have nonphosphorylated light chains in relaxed smooth muscle, Nature 294: 567 (1981).PubMedCrossRefGoogle Scholar
  51. 51.
    E. Grazi and G. Trombetta, evidence that unphosphorylated smooth muscle myosin supports smooth muscle contraction, Biochem. Biophys. Res. Communs. 178: 967 (1991).CrossRefGoogle Scholar
  52. 52.
    M. Barany, E. Polyak, and K. Barany, Protein phosphorylation during the contraction-relaxation-contraction cycle of arterial smooth muscle, Archiv. Biochem. Biophys. 294: 71 (1992).CrossRefGoogle Scholar
  53. 53.
    A. Spacenko, J. Wagner, R. Dabrowska, and J.C. Ruegg, Caldesmon-induced inhibition of ATPase activity of actomyosin and contraction of skinned fibres of chicken gizzard smooth muscle, FEBS Letters 192: 9 (1985).CrossRefGoogle Scholar
  54. 54.
    H. Katsuyama, C.L.A. Wan, and K.G. Morgan, Regulation of vascular smooth muscle tone by caldesmon, J. Biol. Chem. 267: 14555 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Enrico Grazi
    • 1
  1. 1.Istituto di Chimica BiologicaUniversità di FerraraFerraraItaly

Personalised recommendations