Skip to main content

Oxygen Sensing in the Carotid Body: Ideas and Models

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 360))

Abstract

The carotid body is able to respond to changes of the arterial PO2 in a range between 100 Torr and 30 Torr with the chemoreceptor nervous discharge peaking at the low arterial PO2 values (Lahiri & DeLaney, 1975). It is not the scope of this article to review and speculate on the main neurotransmitter which is released in hypoxia from type I cells to excite adjacent nerve endings, nor on the different biophysical properties of the type I cells to facilitate this transmitter release. However, it is the aim of this article to review and to speculate on the different possibilities as to how oxygen changes might be sensed in the carotid body tissue leading to a nervous response. There are three different views concerning the oxygen sensing mechanism in the carotid body that should be mentioned:

  1. 1.)

    The mitochondria are the site of the oxygen sensing, i.e. when the tissue PO2 in the carotid body tissue approaches values close to the critical mitochondrial PO2 (PO2 < 1 Torr) the hypoxia-induced decrease of cellular ATP serves as a triggering signal.

  2. 2.)

    Cytochrome aa3 of carotid body mitochondria has an unusually low affinity for oxygen (PO2 > 90 Torr) and redox changes of this cytochrome dependent on PO2 serve as a signal.

  3. 3.)

    Hemeproteins not involved in the energy producing process by the cytochromes of the mitochondrial respiratory chain undergo redox changes dependent on PO2, inducing the nervous chemoreceptor response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, H., D.W. Lübbers, &M.J.Purves. (1971) Local oxygen tension field in the glomus caroticum of the cat and its change at changing arterial PO2. Pflüg. Arch. 329:136–155

    Article  CAS  Google Scholar 

  • Acker, H., E. Dufau, J. Huber, &D. Sylvester. (1989) Indications to an NAD(P)H oxidase as a possible PO2 sensor in the rat carotid body. FEBS Lett. 256:75–78

    Article  PubMed  CAS  Google Scholar 

  • Acker, H., B. Böiling, M.A. Delpiano, E. Dufau, A. Görlach &G. Holtermann. (1992) The meaning of H2O2 generation in carotid body cells for PO2 chemoreception. J. Auton. Nerv. Syst. 41:41–52

    Article  PubMed  CAS  Google Scholar 

  • Biscoe, T.J., M.R. Duchen, D.A. Eisner, S.C O’Neill &M.Valdeolmillos. (1989) Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body. J. Physiol 416:421–434

    PubMed  CAS  Google Scholar 

  • Bokoch, G.M. (1993) Biology of the Rap proteins, members of the ras superfamily of GTP-binding proteins. Biochem. J. 289:17–24

    PubMed  CAS  Google Scholar 

  • Brand, M.D., &M.P. Murphy. (1987) Control of electron flux through the respiratory chain in mitochondria and cells. Biol. Rev. 62:141–193

    Article  PubMed  CAS  Google Scholar 

  • Chance, B. (1988) Early reduction of cytochrome c in hypoxia. FEBS Lett. 226:343–346

    Article  PubMed  CAS  Google Scholar 

  • Cherry, P.D., H.A. Omar, K.A. Farrell, J.S. Stuart &M.S. Wolin. (1990) Superoxide anion inhibits cGMP associated bovine pulmonary relaxation. Am. J. Physiol. 259(28):H1056–H1062

    PubMed  CAS  Google Scholar 

  • Cross, A.R., L. Henderson, O.T.G. Jones, M.A. Delpiano, J. Hentschel &H. Acker. (1990) Involvement of an NAD(P)H oxidase as a PO2 sensor protein in the rat carotid body. Biochem. J. 272:743–747

    PubMed  CAS  Google Scholar 

  • Donnelly, D.F. (1993) Electrochemical detection of catecholamine release from rat carotid body in vitro. J. Appl. Physiol. 74:2330–2337

    PubMed  CAS  Google Scholar 

  • Duchen, M.R., &T.J. Biscoe. (1992a) Relative mitochondrial membrane potential and [ Ca2+ ] in type I cells isolated from the rabbit carotid body. J. Physiol. 450:33–61

    PubMed  CAS  Google Scholar 

  • Duchen, M.R., &T.J. Biscoe. (1992b) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J. Physiol. 450:13–31

    PubMed  CAS  Google Scholar 

  • Ganfornina, M.D., &J. López-Barneo. (1992) Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J. Gen. Physiol. 100:401–426

    Article  PubMed  CAS  Google Scholar 

  • Hescheler, J., M.A. Delpiano, H. Acker &F. Pietruschka. (1989) Ionic currents on type-I cells of the rabbit carotid body measured by voltage clamp experiments and the effect of hypoxia. Brain Res. 486:79–88

    Article  PubMed  CAS  Google Scholar 

  • Jones, O.T.G., A.R. Cross, J.T. Hancock, L.M. Henderson &V.B. O’Donnell. (1991) Inhibitors of NAD(P)H oxidase as guides to its mechanism. Biochem. Soc. Trans. 19:70–72

    PubMed  CAS  Google Scholar 

  • Kummer, W., J.O. Habeck, D. Koesling, M. Quinn, &H. Acker. (1993) Immunohistochemical analysis of components of the oxygen sensing cascade in the human carotid body. Pflüg. Arch. 422:R129

    Google Scholar 

  • Lahiri, S., &R.G. DeLaney. (1975) Stimulus interaction in the response of carotid body chemoreceptor single afferent fibers. Respir.Physiol. 24:249–266

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, B.B., D.J.C. Cunningham &R.C. Goode. (1968) Depression of hypoxic hyperventilation in man by sudden inspiration of carbon monoxide. In: “Arterial chemoreceptors” R.W. Torrance, ed.. Blackwell, Oxford, pp. 145–148.

    Google Scholar 

  • Lopez-Lopez, J., C. Gonzalez, J. Urena, &J. Lopez-Barneo. (1989) Low PO2 selectively inhibits K channel avtivity in chemoreceptor cells of the mammalian carotid body. J. Gen. Physiol. 93:1001–1015

    Article  PubMed  CAS  Google Scholar 

  • López-López, J.R., &C.González. (1992) Time course of K+ current inhibition by low oxygen in chemoreceptor cells of adult rabbit carotid body. Effects of carbon monoxide. FEBS Lett. 299:251–254

    Article  PubMed  Google Scholar 

  • Mills, E., &F.F. Jöbsis. (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 35:405–428

    PubMed  CAS  Google Scholar 

  • Mulligan, E, S. Lahiri, &B.T.Storey. (1981) Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol. 51:438–446

    PubMed  CAS  Google Scholar 

  • Nair, P.K., D.G. Buerk &W.J. Whalen. (1986) Cat carotid body oxygen metabolism and chemoreception described by a two cytochrome model. Am. J. Physiol. 19:H202–H207

    Google Scholar 

  • Obeso, A., C. Gonzalez, R. Rigual, B. Dinger &S. Fidone. (1993) Effect of low O2 on glucose uptake in rabbit carotid body. J. Appl. Physiol. 74:2387–2393

    PubMed  CAS  Google Scholar 

  • Pietruschka, F. (1985) Calcium influx in cultured carotid body cells is stimulated by acetylcholine and hypoxia. Brain Res. 347:140–143

    Article  PubMed  CAS  Google Scholar 

  • Rumsey, W.L., R. Iturriaga, D. Spergel, S. Lahiri &D.F. Wilson. (1991) Optical measurements of the dependence of chemoreception on oxygen pressure in the cat carotid body. Am. J. Physiol. 261(30):C614–C622

    PubMed  CAS  Google Scholar 

  • Ruppersberg, J.P., M. Stocker, O. Pongs, St.H. Heinemann, R. Frank, &M. Koenen. (1991) Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature. 352:711

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., K. Ikeda, K. Yoshizaki &H. Koyano. (1991) Response of cytosolic calcium to anoxia and cyanide in cultured glomus cells of newborn rabbit carotid body. Brain Res. 551:327–330

    Article  PubMed  CAS  Google Scholar 

  • Sies, H., C.H. Gerstenecker, H. Menzel, &L. Flohé. (1972) Oxidation in the NADP system and release of GSSG from hemoglobin free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett. 171–175

    Google Scholar 

  • Stea, A. &C.A. Nurse. (1991) Whole cell and perforated patch recordings from O2-sensitive rat carotid body cells grown in short and long term culture. Pflügers Arch. 418:93–101

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.Z., L.J. Stensaas, J. de Vente, B. Dinger &S.J. Fidone. (1991) Immunocytochemical locahzation of cAMP and cGMP in cells of the rat carotid body following natural and pharmacological stimulation. Histochem. 96:523–530

    Article  CAS  Google Scholar 

  • Wilson, D.F., W.L. Rumsey, T.J. Green &J.M. Vanderkooi. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263:2712–2718

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acker, H. (1994). Oxygen Sensing in the Carotid Body: Ideas and Models. In: O’Regan, R.G., Nolan, P., McQueen, D.S., Paterson, D.J. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2572-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2572-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6099-5

  • Online ISBN: 978-1-4615-2572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics