Skip to main content

Chemosensitivity from the Lungs of Vertebrates

  • Chapter
Arterial Chemoreceptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 360))

  • 90 Accesses

Abstract

It is well established today that arterial and central receptors sensitive to CO2 and H+ can affect breathing. However, it is likewise appreciated that these receptors alone cannot explain the adaptive changes of respiration in all experimental and natural conditions, particularly not during mild and moderate exercise, when both arterial (and probably central) PCO2 and [H+] are decreased and thus ruled out as stimuli for exercise hyperpnea. The theory of Zuntz & Geppert (1886) of receptors sensitive to the PCO2 in mixed venous blood has, therefore, long remained attractive (see Dejours, 1964) since mixed venous PCO2 is certainly increased even during mild exercise. However, positive evidence for the existence of such receptors in mammals has never been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, H., K.F. Chung, G.D. Leikauf, I. Ueki, R.A. Bethel, P.M. O’Byrne, T. Hirose & J.A. Nadel (1985). Significance of thromboxane generation in ozone-induced airway hyperresponsiveness in dogs. J. Appl. Physiol. 59: 1918–1923.

    PubMed  CAS  Google Scholar 

  • Banzett, R.B., H.M. Coleridge &J.C.G. Coleridge (1978). I. Pulmonary CO2 ventilatory reflex in dogs: effective range of CO2 and results of vagal cooling. Respir. Physiol. 34: 121–134.

    Article  PubMed  CAS  Google Scholar 

  • Beasley, R.C., R.L. Featherstone, M.K. Church, P. Rafferty, J.G. Varley, A. Harris, C. Robinson &S.T. Holgate (1989). Effect of a thromboxane receptor antagonist on PGD2 and allergen-induced bronchoconstriction. J. Appl. Physiol. 66: 1685–1693.

    PubMed  CAS  Google Scholar 

  • Bradley, G.W., M.I.M. Noble &D. Trenchard (1976). The direct effect on pulmonary stretch receptor discharge produced by changing lung carbon dioxide concentration in dogs on cardio-pulmonary bypass and its action on breathing. J. Physiol. (London) 261: 359–373.

    CAS  Google Scholar 

  • Brigham, K.L. &B. Meyrick (1986). Endotoxin and lung injury. Am. Rev. Respir. Dis. 133: 913–927.

    PubMed  CAS  Google Scholar 

  • Brigham, K. (1985). Metabolites of arachidonic acid in experimental lung vascular injury. Fed. Proc. 44: 43–45.

    PubMed  CAS  Google Scholar 

  • Czer, G.T., J. Marsh, R. Konopka &K.M. Moser (1986). Low-dose PGI2 prevents monocrotoline-induced thromboxane production and lung injury. J. Appl. Physiol. 60: 464–471.

    Article  PubMed  CAS  Google Scholar 

  • Dejours, P. (1964). Control of respiration in muscular exercise. In: Handbook of Physiology, Section 3: Respiration, edited by W.O. Fenn and H. Rahn, vol. 1. Washington, DC: American Physiological Society, pp. 631–648.

    Google Scholar 

  • Fedde, M.R. &D.F. Peterson (1970). Intrapulmonary receptor response to changes in airway-gas composition in Gallus domesticus. J. Physiol. (London) 209: 609–625.

    CAS  Google Scholar 

  • Fedde, M.R., R.N. Gatz, H. Slama &P. Scheid (1974a). Intrapulmonary CO2 receptors in the duck: I. Stimulus specificity. Respir. Physiol. 22: 99–114.

    Article  PubMed  Google Scholar 

  • Fedde, M.R., R.N. Gatz, H. Slama &P. Scheid (1974b). Intrapulmonary CO2 receptors in the duck: II. Comparison with mechanoreceptors. Respir. Physiol. 22, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Fedde, M.R., W.D. Kuhlmann &P. Scheid (1977). Intrapulmonary receptors in the tegu lizard: I. Sensitivity to CO2. Respir. Physiol. 29: 35–48.

    Article  Google Scholar 

  • Fedde, M.R., W.D. Kuhlmann &P. Scheid (1977). Intrapulmonary receptors in the tegu lizard: II. Functional characteristics and localization. Respir. Physiol. 29: 49–62.

    Article  PubMed  Google Scholar 

  • Fedde, M.R. &W.D. Kuhlmann (1978). Intrapulmonary carbon dioxide sensitive receptors: amphibians to mammals. In: Respiratory Function in Birds, Adult and Embryonic, edited by J. Piiper. Berlin, Heidelberg, New York: Springer, pp. 33–50.

    Chapter  Google Scholar 

  • Garcia-Szabo, R., A. Johnson &A.B. Malik (1988). Thromboxane increases pulmonary vascular resistance and transvascular fluid and protein exchange after pulmonary microembolism. Prostaglandins 35: 707–721.

    Article  PubMed  CAS  Google Scholar 

  • Karla, W., H. Shams, J.A. Orr &P. Scheid (1992). Effects of the thromboxane A2 mimetic, U 46,619, on pulmonary vagal afferents in the cat. Respir. Physiol. 87: 383–396.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P.G., J.M. Bolds, J.E. Loyd, J.R. Snapper &G.A. Fitzgerald (1988). Thromboxane receptor-mediated bronchial and hemodynamic responses in ovine endotoxemia. Am. J. Physiol. 254: R310–R319.

    PubMed  CAS  Google Scholar 

  • Kunz, A.L., T. Kawashiro &P. Scheid (1976). Study of CO2 sensitive vagal afferents in the cat lung. Respir. Physiol. 27: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, G.S., B.A. Cross, T. Hiramoto &P. Scheid (1980). Effects of intrapulmonary CO2 and airway pressure on phrenic activity and pulmonary stretch receptor discharge in dogs. Respir. Physiol. 40: 29–48.

    Article  Google Scholar 

  • Molony, V. (1974). Classification of vagal afferents firing in phase with breathing in Gallus domesticus. Respir. Physiol. 22: 57–76.

    Article  PubMed  CAS  Google Scholar 

  • Mustafa, M.E.K.Y. &M.J. Purves (1972). The effect of CO2 upon discharge from slowly adapting stretch receptors in lungs of rabbits. Respir. Physiol. 16: 197–212.

    Article  PubMed  CAS  Google Scholar 

  • Orr, J.A., H. Shams, W. Karla, B.A. Peskar &P. Scheid (1993). Transient ventilatory responses to endotoxin infusion in the cat are mediated by thromboxane A2. Respir. Physiol. 93:189–201.

    Article  PubMed  CAS  Google Scholar 

  • Orr, J.A., M.R. Fedde, H. Shams, H. Röskenbleck and P. Scheid (1988). Absence of CO2-sensitive venous chemoreceptors in the cat. Respir. Physiol. 73: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Orr, J.A., H. Shams, M.R. Fedde &P. Scheid (1987). Cardiorespiratory changes during HC1 infusion unrelated to decreases in circulating blood pH. J. Appl. Physiol. 62: 2362–2370.

    PubMed  CAS  Google Scholar 

  • Richalet, J.-P., A. Hornych, C. Rathat, J. Aumont, P. Larmignat &P. Remy (1991). Plasma prostaglandins, leukotrienes, and thromboxane in acute high altitude hypoxia. Respir. Physiol. 85: 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Sant’Ambrogio, G., G. Miserocchi &J. Mortola (1974). Transient responses of pulmonary stretch receptors in the dog to inhalation of carbon dioxide. Respir. Physiol. 22: 191–197.

    Article  PubMed  Google Scholar 

  • Scheid, P. &J. Piiper (1986). Control of breathing in birds. In: Handbook of Physiology, Section 3: The Respiratory System, Volume II: Control of Breathing, edited by A.P. Fishman, N.S. Cherniack &J.G. Widdicombe, Part 2. Bethesda, MD: American Physiological Society, pp. 815–832.

    Google Scholar 

  • Scheid, P. (1979). Mechanisms of gas exchange in bird lungs. Rev. Physiol. Biochem. Pharmacol. 86: 137–186.

    Article  PubMed  CAS  Google Scholar 

  • Schoener, E.P. &H.M. Frankel (1972). Effect of hyperthermia and PaCO2 on the slowly adapting pulmonary stretch receptor. Am. J. Physiol. 222:68–72.

    PubMed  CAS  Google Scholar 

  • Schumacher, W.A., C.L. Heran &M.L. Ogletree (1990). Protamine-induced pulmonary hypertension in heparinized monkeys and pigs is inhibited by the thromboxane receptor antagonist, SQ 30,741. Eicosanoids 3: 87–93.

    PubMed  CAS  Google Scholar 

  • Shams, H., B.A. Peskar &P. Scheid (1988). Acid infusion elicits thromboxane A2-mediated effects on respiration and pulmonary hemodynamics in the cat. Respir. Physiol. 71: 169–183.

    Article  PubMed  CAS  Google Scholar 

  • Shams, H. &P. Scheid (1990). Effects of thromboxane on respiration and pulmonary circulation in the cat: role of vagus nerve. J. Appl. Physiol. 68: 2042–2046.

    PubMed  CAS  Google Scholar 

  • Sheldon, M.I. &J.F. Green (1982). Evidence for pulmonary CO2 chemosensitivity: effects on ventilation. J. Appl. Physiol. 21: 1108–1116.

    Google Scholar 

  • Winn, R., J. Harlan, B. Nadir, L. Harker &J. Hildebrandt (1983). Thromboxane A2 mediates the lung vasoconstriction but not permeability after endotoxin. J. Clin. Invest. 72: 911–918.

    Article  PubMed  CAS  Google Scholar 

  • Zuntz, N. &J. Geppert (1886). Ãœber die Natur der normalen Atemreize und den Ort ihrer Wirkung. Arch. ges. Physiol. 38: 337–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheid, P., Shams, H. (1994). Chemosensitivity from the Lungs of Vertebrates. In: O’Regan, R.G., Nolan, P., McQueen, D.S., Paterson, D.J. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2572-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2572-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6099-5

  • Online ISBN: 978-1-4615-2572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics