Skip to main content

Phase Coherent Wavelets, Fourier Transform, Magnetic Resonance Imaging, and Synchronized Time-Domain Neural Networks

  • Chapter
Book cover Quantization and Infinite-Dimensional Systems
  • 114 Accesses

Abstract

Imaging and visualization in biomedical computing has rapidly emerged as a significant area of research aimed at developing approaches and tools for diagnosis of living systems. The final goal of diagnostic imaging procedures is to image the human body and its organ systems in a non-invasive way such that either tissue morphology or biomedical functional processes can be localized and quantified. The purpose of this paper is to indicate the significance of phase coherent wavelets in the field of phase and intensity preserving planar imaging and visualization. Planar imaging means the encoding of time-domain signals into two-dimensional spatial coordinate frames, whereas planar visualization is provided by the decoding procedure. Based on a phase coherent reference wave, phase coherent wavelets allow to create a link between temporal phase encoding and spatial encoding in such a way that temporal phase and spatial position in the image plane form essentially synonymous concepts which can be decoded by a two-dimensional Fourier transform. This linkage which represents a fundamental principle of quantum holography and phase coherent radargrammetric imaging of remote sensing, is the key to the implementation of synchronized time-domain neural network models and the quantum holographic technique of effective time reversal by the quantum coherent phenomenon of non-linear phase conjugation refocusing. The link is mathematically implemented by the unitary dual of the real Heisenberg nilpotent Lie group, the planar coadjoint orbits O v (v0) of which being the basis of geometric quantization theory and coherent signal geometry. Fast imaging procedures need the transition to the compact Heisenberg nilmanifold which forms the quotient of the real Heisenberg nilpotent Lie group modulo its discrete Heisenberg subgroup. The principles of planar imaging using phase coherent wavelets are explained by the example of pulse Fourier transform magnetic resonance imaging (FT-MRI). Magnetic spin echo holograms form the symplectically invariant Weyl symbols of phase holograms in the selectively excited planar coadjoint orbit O v localizing the on resonance spin isochromats with respect to a controlled magnetic field linear gradient frame. Read out visualization of the magnetic spin echo holograms is performed by a symplectic Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Schempp, Quantum computation in ultrasonic acoustic chaos physics (to appear).

    Google Scholar 

  2. W. Schempp, Quantum holography and neurocomputer architectures, in: “Holography, Commemorating the 90th Anniversary of the Birth of Dennis Gabor”,P. Greguss, T.H. Jeong, eds., SPIE Optical Engineering Press, Bellingham, WA, pp. 62–144 (1991).

    Google Scholar 

  3. W. Schempp, Bohr’s indeterminacy principle in quantum holography, self-adaptive neural network architectures, cortical self-organization, molecular computers, magnetic resonance imaging and solitonic nanotechnology, Nanobiology 2:109 (1993).

    Google Scholar 

  4. A. Yariv, “An Introduction to Theory and Applications of Quantum Mechanics”,J. Wiley &Sons, New York (1982).

    Google Scholar 

  5. J. Lissner, M. Seiderer (Hrsg.), “Klinische Kernspintomographie”,2. Aufl., F. Enke Verlag, Stuttgart (1990).

    Google Scholar 

  6. M. Reiser, W. Semmler (Hrsg.), “Magnetresonanztomographie”,Springer-Verlag, Berlin, Heidelberg, New York (1992).

    Google Scholar 

  7. T. Seiler, T. Bende, Magnetic resonance imaging of the eye and orbit, in: “Noninvasive Diagnostic Techniques in Opthalmology”,B.R. Masters, ed., Springer-Verlag, New York, Berlin, Heidelberg, pp. 17–31 (1990).

    Chapter  Google Scholar 

  8. W. Schempp, “Phase Coherent Wavelets, Fourier Transform Magnetic Resonance Imaging, and Synchronized Time-Domain Neural Networks”,Pitman Research Notes in Mathematics Series (in print).

    Google Scholar 

  9. E.L. Hahn, NMR and MRI in retrospect, Phil. Trans. R. Soc. Lond. A 333:403 (1990).

    Article  ADS  Google Scholar 

  10. H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engelmann, and H.J. Baur, The Heidelberg ray tracing model, IEEE Computer Graphics and Appl. 11:34 (1991).

    Article  Google Scholar 

  11. A.K. Engel, P. König, A.K. Kreiter, T.B. Schillen, and W. Singer, Temporal coding in the visual cortex: new vistas on integration in the nervous system, Trends in Neurosciences 15:218 (1992).

    Article  Google Scholar 

  12. W. Singer, Search for coherence: a basic principle of cortical self-organization, Concepts Neurosci. 1:1 (1990).

    Article  Google Scholar 

  13. W. Singer, Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol. 55:349 (1993).

    Article  Google Scholar 

  14. G. Pfurtscheller, C. Neuper, Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements, NeuroReport 3:1057 (1992).

    Article  Google Scholar 

  15. L. Hörmander, The Weyl calculus of pseudodifferential operators, Coram. Pure Appl. Math. 32:359 (1979).

    Article  MATH  Google Scholar 

  16. F.W. Leberl, “Radargrammetric Image Processing”,Artech House, Boston, London (1990).

    Google Scholar 

  17. R.E. Hendrick, P.D. Russ, and J.H. Simon, “MRI: Principles and Artifacts”,Raven Press, New York (1993).

    Google Scholar 

  18. G.A. Carpenter, Neural network models for pattern recognition and associative memory, Neural Networks 2:243 (1989).

    Article  Google Scholar 

  19. P. Mansfield, Imaging by nuclear magnetic resonance, in: “Pulsed Magnetic Resonance-NMR, ESR, and Optics: A Recognition of E.L. Hahn”,D.M.S. Bagguley, ed., Clarendon Press, Oxford (1992).

    Google Scholar 

  20. H. Kobayashi, T. Matsumoto, T. Yagi, and T. Shimmi, Image processing regularization filters on layered architecture, Neural Networks 6:327 (1993).

    Article  Google Scholar 

  21. A. Grossmann, J. Morlet, Decomposition of functions into wavelets of constant shape, and related transforms, in: “Mathematics and Physics , Lectures on Recent Results”,Vol. 1, pp. 135–165, L. Streit, ed., World Scientific, Singapore, Philadelphia (1985).

    Google Scholar 

  22. G. Strang, Wavelet transforms versus Fourier transforms, Bulletin (New Series) of the Amer. Math. Soc. 28:288 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Schempp, “Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory”,J. Wiley & Sons, New York (1986).

    MATH  Google Scholar 

  24. A. Haase, Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging, Magn. Reson. Med. 13:77 (1990).

    Article  MathSciNet  Google Scholar 

  25. R. Damadian, Tumor detection by nuclear magnetic resonance, Science 171:1151 (1971).

    Article  ADS  Google Scholar 

  26. L. Cecconi, A. Pompili, F. Caroli, and E. Squillaci, “MRI Atlas of Central Nervous System Tumors”,Springer-Verlag, Wien, New York (1992).

    Book  Google Scholar 

  27. T.J. Vogl, “Kernspintomographie der Kopf-Hals-Region”, Springer-Verlag, Berlin, Heidelberg, New York (1991).

    Google Scholar 

  28. T.B. Möller, E. Reif, “MR-Atlas des Muskuloskelettalen Systems”, Blackwell Wissenschafts-Verlag, Berlin (1993).

    Google Scholar 

  29. S.H. Heywang-Köbrunner, “Contrast-Enhanced MRI of the Breast”, S. Karger, Basel, München, Paris (1990).

    Google Scholar 

  30. W.A. Kaiser, “MR Mammography (MRM)”, Springer-Verlag, Berlin, Heidelberg, New York (1993).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schempp, W. (1994). Phase Coherent Wavelets, Fourier Transform, Magnetic Resonance Imaging, and Synchronized Time-Domain Neural Networks. In: Antoine, JP., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds) Quantization and Infinite-Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2564-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2564-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6095-7

  • Online ISBN: 978-1-4615-2564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics