Skip to main content

Quantum Frames, Quantization and Dequantization

  • Chapter
Quantization and Infinite-Dimensional Systems

Abstract

A continuous frame in a Hilbert space is a concept well adapted for constructing very general classes of coherent states, in particular those associated to group representations which are square integrable only on a homogeneous space. In addition, (quantum) frames provide a method of quantization which generalizes the coherent state approach and fits in neatly with the operational meaning of quantum measurements. We discuss this approach in detail, taking as our working example the case of the Poincaré group in 1+1 space-time dimensions. We also compare this approach to the familiar geometric quantization method, which turns out to be less versatile than the new one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.T. Ali, J-P. Antoine and J-P. Gazeau, De Sitter to Poincaré contraction and relativistic coherent states, Ann. Inst. H.Poincaré 52:90 (1990)

    MathSciNet  Google Scholar 

  2. S.T. Ali, J-P. Antoine and J-P. Gazeau, Square integrability of group representations on homogeneous spaces. I, II, ibid. 55: 829, 857 (1991).

    MathSciNet  Google Scholar 

  3. S.T. Ali, J-P. Antoine and J-P. Gazeau, Continuous frames in Hilbert space, Ann. Phys. (NY) 222: 1 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S.T. Ali, J-P. Antoine and J-P. Gazeau, Relativistic quantum frames, Ann. Phys. (NY) 222: 38 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J-M. Combes, A. Grossmann, P. Tchamitchian (eds.), “Wavelets: Time-Frequency Methods and Phase Space (Proc. Marseille 1987)” Springer-Verlag, Berlin, (1989).

    Google Scholar 

  6. J.R. Klauder, Continuous-representation theory. II. Generalized relation between quantum and classical dynamics J. Math. Phys. 4: 1058 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Grossmann, J. Morlet, T. Paul, Integral transforms associated to square integrable representations. I-II, J. Math. Phys. 26: 2473 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Grossmann, J. Morlet, T. Paul, Ann. Inst. H. Poincaré 45: 293 (1986).

    MathSciNet  MATH  Google Scholar 

  9. R. Gilmore, Geometry of symmetrized states, Ann. Phys. (NY) 74: 391 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Gilmore, On the properties of coherent states, Rev. Mex. Fis. 23: 143 (1974).

    Google Scholar 

  11. A. Perelomov, Coherent states for arbitrary Lie group, Commun. Math. Phys. 26: 222 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Perelomov, “Generalized Coherent States and Their Applications”, Springer-Verlag, Berlin (1986).

    Book  MATH  Google Scholar 

  13. E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik, Naiurwiss. 14: 664 (1926).

    Article  ADS  MATH  Google Scholar 

  14. R.J. Glauber, The quantum theory of optical coherence, Phys. Rev. 130: 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  15. R.J. Glauber, Coherent and incoherent states of radiation field, ibid. 131: 2766 (1963).

    MathSciNet  ADS  Google Scholar 

  16. J.R. Klauder and B.S. Skagerstam, “Coherent States -Applications in Physics and Mathematical Physics”, World Scientific, Singapore (1985).

    MATH  Google Scholar 

  17. A. Inomata, H. Kuratsuji and C.C. Gerry, “Path Integrals and Coherent States of SU(2) and SU(1,1)”, World Scientific, Singapore (1992).

    Google Scholar 

  18. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72: 341 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27: 1271 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. De Bièvre and J.A. Gonzalez, Semi-classical behaviour of the Weyl correspondence on the circle, in: “ Group-Theoretical Methods in Physics (Proc. Salamanca 1992)” , pp. 343–346

    Google Scholar 

  21. M. del Olmo, M. Santander and J. Mateos Guilarte (eds.), CIEMAT, Madrid (1993).

    Google Scholar 

  22. G. Kaiser, “Quantum Physics, Relativity and Complex Spacetime -Towards a New Synthesis”, North-Holland, Amsterdam (1990).

    MATH  Google Scholar 

  23. F.A. Berezin, General concept of quantization, Commun. Math. Phys. 40: 153 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  24. S.T. Ali, Survey of quantization methods, in: “Classical and Quantum Systems -Foundations and Symmetries (Proc. II. Intern. Wigner Symposium)”, p. 29

    Google Scholar 

  25. H.D. Doebner et al., eds., World Scientific, Singapore (1993).

    Google Scholar 

  26. S.T. Ali and H.D. Doebner, Ordering problem in quantum mechanics: Prime quantization and a physical interpretation, Phys. Rev. A 41: 1199 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  27. N.J.M. Woodhouse, “Geometric Quantization”, 2nd ed. Oxford Science Publications, Clarendon Press (1992).

    MATH  Google Scholar 

  28. E. Prugovečki, “Stochastic Quantum Mechanics and Quantum Spacetime”, Reidel, Dordrecht, (1986).

    Book  Google Scholar 

  29. S.T. Ali, Stochastic localisation, quantum mechanics on phase and quantum space-time, Riv. Nuovo Cim. 8, Nr.11: 1 (1985).

    Article  Google Scholar 

  30. S.T. Ali and U.A. Mueller, Berezin quantization of a classical system on a coadjoint orbit of the Poincaré group in 1+1 dimensions, J. Math. Phys. ,to appear (1994).

    Google Scholar 

  31. A. Odzijewicz, Coherent states and geometric quantization, Commun. Math. Phys. 150: 385 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. B. Kostant, Quantization and unitary representations, in: “Lectures in Modern Analysis and Applications. III”, Lecture Notes in Mathematics ,170: 87, Springer, Berlin (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ali, S.T., Antoine, JP. (1994). Quantum Frames, Quantization and Dequantization. In: Antoine, JP., Ali, S.T., Lisiecki, W., Mladenov, I.M., Odzijewicz, A. (eds) Quantization and Infinite-Dimensional Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2564-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2564-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6095-7

  • Online ISBN: 978-1-4615-2564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics