Photon and Meson Production in Ultra-Relativistic Nucleus-Nucleus Collisions

  • Herbert Löhner
Part of the NATO ASI Series book series (NSSB, volume 333)

Abstract

In high-energy collisions of heavy nuclei the interaction of baryons and their parton constituents leads to abundant production of mesons, so that a hadronic system is created with a particle density much larger than the mere baryonic superposition density of 2γρ 0. Here ρ 0 is the normal nuclear density of 0.17/fm3 and γ the center-of-mass Lorentz factor with a value γ ≈ 10 at the SPS energy of 200 GeV/nucleon. Collisions among the constituents of the dense hadronic system lead to thermal excitation. Eventually, a physical situation similar to the big-bang scenario might thus be established in the laboratory. This allows to investigate the existence and the nature of the phase transition to quark matter1 which is predicted by QCD lattice calculations2, 3, 4, 5 in hadronic-matter systems at high energy density. The study of the thermodynamic behaviour of a strongly-interacting-matter system will provide an interesting test of the confinement property of QCD. The interaction of elementary quark and gluon constituents is weakend by colour screening at very short distances. Sufficiently hot and dense matter should therefore become a gas of noninteracting quarks and gluons which move quasifreely in a deconfined but overall colour neutral environment given by the dimensions of the dense-matter volume. Numerical simulations of statistical QCD in the non-perturbative sector of QCD are very time-consuming calculations and still suffer from severe approximations. These refer to the quark-masses and the limited lattice size. The order of the phase transition is still not firmly predicted. Calculations with infinitly large or zero quark masses yield a first-order phase transition, while finite quark masses (m u,d = 10 MeV, m s = 200 MeV) seem to indicate a second-order phase change5.

Keywords

Entropy Calculated In44 Calorimeter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Satz, Phys. Rep. 88 (1982) 349Google Scholar
  2. [2]
    H. Satz, Ann. Rev. Nucl. Part. Sci. 35 (1985) 245ADSCrossRefGoogle Scholar
  3. [3]
    F. Karsch and R. Petronzio, Z. Physik C 37 (1988) 627ADSCrossRefGoogle Scholar
  4. [4]
    J. Engels et al., Phys. Lett. B 252 (1990) 625ADSCrossRefGoogle Scholar
  5. [5]
    F.R. Brown et al., Phys. Rev. Lett. 65 (1990) 2491ADSCrossRefGoogle Scholar
  6. [6]
    H. Satz, CERN-TH.6666/92 preprint and BI-TP 92/37 preprintGoogle Scholar
  7. [7]
    U. Mosel and V. Metag, Phys. Bl. 49 (1993) 426Google Scholar
  8. [7a]
    S.A. Bass, C. Hartnack, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 71 (1993) 1144ADSCrossRefGoogle Scholar
  9. [8]
    R. Hagedorn, Rivista del Nuovo Cimento 6 (1983) 1CrossRefGoogle Scholar
  10. [9]
    H.R. Schmidt and J. Schukraft, GSI preprint GSI-92–19, to be published in Journ. of Modern Physics GGoogle Scholar
  11. [10]
    R. Albrecht et al., WA80 Collaboration, Z. Physik C 47 (1990) 367CrossRefGoogle Scholar
  12. [11]
    R. Albrecht at al., WA80 Collaboration, Z. Physik C 51 (1991) 1CrossRefMathSciNetGoogle Scholar
  13. [12]
    T. Åkesson et al., NA34/HELIOS Collaboration, Z. Physik C 46 (1990) 369CrossRefGoogle Scholar
  14. [13]
    A. Drees, NA45/CERES Collaboration, invited talk presented at the Tenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Borlänge, Sweden 1993, to be published in Nucl. Phys. AGoogle Scholar
  15. [14]
    J. Stachel and G.R. Young, Ann. Rev. Nucl. Part. Sc. 42 (1992) 537ADSCrossRefGoogle Scholar
  16. [15]
    G. R. Young et al., Nucl. Instr. Meth. A 279 (1989) 503ADSCrossRefGoogle Scholar
  17. [15a]
    T. C. Awes et al., Nucl. Instr. Meth. A 279 (1989) 479ADSCrossRefGoogle Scholar
  18. [16]
    R. Albrecht et al., Nucl. Instr. Meth. A 276 (1989) 131ADSCrossRefGoogle Scholar
  19. [17]
    H. Baumeister et al., Nucl. Instr. Meth. A 292 (1990) 81ADSCrossRefGoogle Scholar
  20. [18]
    A. Baden et al., Nucl. Instr. Meth. 203 (1982) 189CrossRefGoogle Scholar
  21. [19]
    K.H. Kampert et al., Prog. Part. Nucl. Phys. 30 (1993) 171ADSCrossRefGoogle Scholar
  22. [20]
    F. Berger et al., Nucl. Instr. Meth. A 321 (1992) 152ADSCrossRefGoogle Scholar
  23. [21]
    S. Lebedev, WA80 Collaboration, invited talk presented at the Tenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Borlänge, Sweden 1993, to be published in Nucl. Phys. AGoogle Scholar
  24. [22]
    R. Albrecht et al., WA80 Collaboration, Phys. Rev. C 44 (1991) 2736ADSCrossRefMathSciNetGoogle Scholar
  25. [23]
    J.D Bjorken, Phys. Rev. D 27 (1983) 140ADSCrossRefGoogle Scholar
  26. [24]
    J. W. Cronin et al., Phys. Rev. D 11 (1975) 3105ADSCrossRefGoogle Scholar
  27. [24a]
    D. Antreasyan et al., Phys. Rev. D 19 (1979) 764ADSCrossRefGoogle Scholar
  28. [25]
    M. Lev and B. Petersson, Z. Physik C 21 (1983) 155ADSCrossRefGoogle Scholar
  29. [26]
    T. Åkesson et al, NA34/HELIOS Collaboration, Z. Physik C 46 (1990) 361CrossRefGoogle Scholar
  30. [27]
    B. Alper et al., BS Collaboration, Nucl. Phys. B 100 (1975) 237ADSCrossRefGoogle Scholar
  31. [28]
    H. van Hecke at al., NA34 Collaboration, Nucl. Phys. A 525 (1991) 227ADSCrossRefGoogle Scholar
  32. [28a]
    T. Åkesson et al., NA34/HELIOS Collaboration, Phys. Lett. B 296 (1992) 273ADSCrossRefGoogle Scholar
  33. [29]
    R.A. Salmeron, invited talk presented at the Tenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Borlänge, Sweden 1993, to be published in Nucl. Phys. AGoogle Scholar
  34. [30]
    R. Matiello, H. Sorge, H. Stöcker and W. Greiner, Phys. Rev. Lett. 63 (1989) 1459ADSCrossRefGoogle Scholar
  35. [31]
    B. Andersson, G. Gustafson and B. Nilsson-Almquist, Nucl. Phys. B 281 (1987) 289ADSCrossRefGoogle Scholar
  36. [32]
    C. Baglin et al., NA38 Collaboration, Phys. Lett. B 251 (1990) 465ADSCrossRefGoogle Scholar
  37. [32a]
    C. Baglin et al., NA38 Collaboration,Phys. Lett. B 255 (1991) 459ADSCrossRefGoogle Scholar
  38. [33]
    T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416ADSCrossRefGoogle Scholar
  39. [34]
    T. Ferbel and W. R. Molzon, Rev. Mod. Phys. 56 (1984) 181ADSCrossRefGoogle Scholar
  40. [35]
    J.F. Owens, Rev. Mod. Phys. 59 (1987) 465ADSCrossRefGoogle Scholar
  41. [36]
    E. Anassontzis et al., Z. Physik C 13 (1982) 277ADSCrossRefGoogle Scholar
  42. [36a]
    A.P. Contogouris, S. Papadopoulos and J. Ralston, Phys. Rev. D 25 (1982) 1280ADSCrossRefGoogle Scholar
  43. [37]
    E. L. Feinberg, Nuovo Cimento 34 A (1976) 391Google Scholar
  44. [38]
    M. Neubert, Z. Physik C 42 (1989) 231CrossRefGoogle Scholar
  45. [39]
    N.P. Landsman and Ch.G. van Weert, Phys. Rep. 145 (1987) 141ADSCrossRefMathSciNetGoogle Scholar
  46. [40]
    J. Kapusta, P. Lichard and D. Seibert, Phys. Rev. D 44 1991Google Scholar
  47. [41]
    R. Baier, H. Nakkagawa, A. Niegawa and K. Redlich, Z. Physik C 53 (1992) 433ADSCrossRefGoogle Scholar
  48. [42]
    F. Karsch, Z. Physik C 38 (1988) 147ADSCrossRefGoogle Scholar
  49. [43]
    R. C. Hwa and K. Kajantie, Phys. Rev. D 32 (1985) 1109ADSCrossRefGoogle Scholar
  50. [44]
    P.V. Ruuskanen, Nucl. Phys. A 544 (1992) 169cADSGoogle Scholar
  51. [44a]
    K. Kajantie and P.V. Ruuskanen, Phys. Lett. B 121 (1983) 352ADSCrossRefGoogle Scholar
  52. [45]
    D. Bucher, Diploma thesis, Univ. Münster 1993Google Scholar
  53. [46]
    L. Xiong, E. Shuryak and G.E. Brown, Phys. Rev. D 46 (1992) 3798ADSCrossRefGoogle Scholar
  54. [47]
    K. Geiger and J.I. Kapusta, Phys. Rev. D 37 (1993) 4905ADSCrossRefGoogle Scholar
  55. [48]
    S. Chakrabarty et al., Phys. Rev. D 46 (1992) 3802ADSCrossRefGoogle Scholar
  56. [49]
    D. Seibert, Z. Physik C 58 (1993) 307ADSCrossRefGoogle Scholar
  57. [50]
    W. Busza and A. Goldhaber, Phys. Lett. B 139 (1984) 235ADSCrossRefGoogle Scholar
  58. [51]
    H. von Gersdorffet al., Phys. Rev. D 34 (1986) 794ADSCrossRefGoogle Scholar
  59. [52]
    L. McLerran and T. Toimela, Phys. Rev. D 31 (1985) 545ADSCrossRefGoogle Scholar
  60. [53]
    K. S. Lee and U. Heinz, Z. Physik C 43 (1989) 425ADSCrossRefGoogle Scholar
  61. [53a]
    E. Schnedermann and U. Heinz, Phys. Rev. Lett. 69 (1992) 2908ADSCrossRefGoogle Scholar
  62. [54]
    M. Gyulassy and T. Matsui, Phys. Rev. D 29 (1984) 419ADSCrossRefGoogle Scholar
  63. [55]
    K. Werner, Phys. Rev. Lett. 62 (1989) 2460ADSCrossRefGoogle Scholar
  64. [56]
    D.K. Srivastava et al., Phys. Lett. B 276 (1992) 285ADSCrossRefGoogle Scholar
  65. [57]
    J. Bartke et al., Nucl. Phys. B 120 (1977) 14ADSCrossRefGoogle Scholar
  66. [57a]
    E. V. Shuryak, Phys. Rep. 61 (1980) 71ADSCrossRefMathSciNetGoogle Scholar
  67. [58]
    G. Clewing, PhD thesis, Univ. Münster 1993Google Scholar
  68. [59]
    G. Hölker, PhD thesis, Univ. Münster 1993Google Scholar
  69. [60]
    R. Santo, WA8O Collaboration, invited talk presented at the Tenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Borlänge, Sweden 1993, to be published in Nucl. Phys. A; IKP-MS-93/0701 preprint 1993Google Scholar
  70. [61]
    D.K. Srivastava and J.I. Kapusta, Phys. Lett. B 307 (1993) 1ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Herbert Löhner
    • 1
  1. 1.Kernfysisch Versneller Instituut Rijksuniversiteit GroningenThe Netherlands

Personalised recommendations