Skip to main content

The Structure and Function of Iron Regulatory Factor

  • Chapter
Progress in Iron Research

Abstract

The discovery of iron regulatory factor (IRF), a soluble cytoplasmic protein also referred to as iron-responsive element-binding protein (IRE-BP) or ferritin repressor protein (FRP), has led to the characterization of a coordinate post-transcriptional regulation of key proteins in cellular iron metabolism. 1-3 The control integrates cellular iron absorption by receptor-mediated endocytosis of transferrin, iron storage in ferritin and specific pathways of iron utilization (Fig.l). Most remarkably, iron appears to regulate its own intra-cellular homeostasis through mechanisms that act as feedback loops: IRF is active as a mRNA-binding protein only after iron deprivation. Under these conditions, it associates with the iron responsive elements (IRE) in the 5’ or 3’ untranslated mRNA-regions and thereby inhibits ferritin synthesis as well as transferrin receptor (TfR) mRNA degradation (Fig.l). As a result ferritin is less expressed and iron storage diminished, while TfR expression and iron uptake is increased. Both effects tend to compensate for the unavailability of cellular iron. Once the free iron pool has increased to higher levels, IRF becomes inactivated and presumably dissociates from the IREs. This permits a shift in the regulatory balance and results in facilitated iron deposition and reduced iron uptake. IRF can therefore be considered as both a sensor and regulator of intra-cellular iron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.C. Kühn, mRNA-protein interactions regulate critical pathways in cellular iron metabolism, Br. J. Haematol 79: 1–5 (1991).

    Article  PubMed  Google Scholar 

  2. L.C. Kühn and M.W. Hentze, Coordination of cellular iron metabolism by post-transcriptional gene regulation, J.Jnorg.Biochem. 47: 183–195 (1992).

    Article  Google Scholar 

  3. R.D. Klausner, T.A. Rouault, and J.B. Harford, Regulating the fate of mRNA: The control of cellular iron metabolism, Cell 72: 19–28 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. E.W. Müllner, B. Neupert, and L.C. Kühn, A specific mRNA-binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA, Cell 58: 373–382 (1989).

    Article  PubMed  Google Scholar 

  5. N. Aziz and H.N. Munro, Iron regulates ferritin mRNA translation through a segment of its 5’ untranslated region, Proc.Natl.Acad.Sci.USA 84: 8478–8482 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. M.W. Hentze, S.W. Caughman, T.A. Rouault, J.G. Barriocanal, A. Dancis, J.B. Harford, and R.D. Klausner, Identification of the iron-responsive element for the translational regulation of human ferritin mRNA, Science 238: 1570–1572 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. E.A. Leibold and H.N. Munro, Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5’ untranslated region of ferritin heavy-and light-subunit mRNAs, Proc.Natl.Acad.Sci.USA 85: 2171–2175 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. J.L. Casey, M.W. Hentze, D.M. Koeller, S.W. Caughman, T.A. Rouault, R.D. Klausner, and J.B. Harford, Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation, Science 240: 924–928 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. T.A. Rouault, M.W. Hentze, S.W. Caughman, J.B. Harford, and R.D. Klausner, Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA, Science 241: 1207–1210 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. T.C. Cox, M.J. Bawden, A. Martin, and B.K. May, Human erythroid 5-aminolevulinate synthase: promoter analysis and identification of an iron-responsive element in the mRNA, EMBO J. 10: 1891–1902 (1991).

    PubMed  CAS  Google Scholar 

  11. T. Dandekar, R. Stripecke, N.K. Gray, B. Goossen, A. Constable, H.E. Johansson, and M.W. Hentze, Identification of a novel iron-responsive element in murine and human erythroid deltaaminolevulinic acid synthase mRNA, EMBO J. 10: 1903–1909 (1991).

    PubMed  CAS  Google Scholar 

  12. W.E. Walden, M.M. Patino, and L. Gaffield, Purification of a specific repressor of ferritin mRNA translation from rabbit liver, J.Biol.Chem. 264: 13765–13769 (1989).

    PubMed  CAS  Google Scholar 

  13. B. Goossen, S.W. Caughman, J.B. Harford, R.D. Klausner, and M.W. Hentze, Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivo, EMBO J. 9: 4127–4133 (1990).

    PubMed  CAS  Google Scholar 

  14. OÖ. Melefors, B. Goossen, H.E. Johansson, R. Stripecke, N.K. Gray, and M.W. Hentze, Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells, J.Biol.Chem. 268: 5974–5978 (1993).

    PubMed  Google Scholar 

  15. C.R. Bhasker, G. Burgiel, B. Neupert, A. Emery-Goodman, L.C. Kühn, and B.K. May, The putative iron-responsive element in the human erythroid 5-aminolevulinate synthase mRNA mediates translational control, J.Biol.Chem. 268: 12699–12705 (1993).

    PubMed  CAS  Google Scholar 

  16. D. Owen and L.C. Kühn, Noncoding 3’ sequences of the transferrin receptor gene are required for mRNA regulation by iron, EMBO J. 6: 1287–1293 (1987).

    PubMed  CAS  Google Scholar 

  17. E.W. Müllner and L.C. Kühn, A stem-loop in the 3’ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm, Cell 53: 815–825 (1988).

    Article  PubMed  Google Scholar 

  18. J.L. Casey, D.M. Koeller, V.C. Ramin, R.D. Klausner, and J.B. Harford, Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3’ untranslated region of the mRNA, EMBO J. 8: 3693–3699 (1989).

    PubMed  CAS  Google Scholar 

  19. S. Rothenberger, E.W. Müllner, and L.C. Kühn, The mRNA-binding protein which controls ferritin and transferrin receptor expression is conserved during evolution, Nucleic Acids Res. 18: 1175–1179 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. T.A. Rouault, C.K. Tang, S. Kaptain, W.H. Burgess, D.J. Haile, F. Samaniego, O.W. McBride, J.B. Harford, and R.D. Klausner, Cloning of the cDNA encoding an RNA regulatory protein-the human iron-responsive element-binding protein, ProcNat.lAcad.Sci.USA 87: 7958–7962 (1990).

    Article  CAS  Google Scholar 

  21. C.C. Philpott, T.A. Rouault, and R.D. Klausner, Sequence and expression of the murine iron-responsive element binding protein, Nucleic Acids Res. 19: 6333 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. H. Hirling, A. Emery-Goodman, N. Thompson, B. Neupert, C. Seiser, and L.C. Kühn, Expression of active iron regulatory factor from a full-length human cDNA by in vitro transcription/translation, Nucleic Acids Res. 20: 33–39 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Yu, E. Radisky, and E.A. Leibold, The iron-responsive element binding protein. Purification, cloning, and regulation in rat liver, J.Biol.Chem. 267: 19005–19010 (1992).

    PubMed  CAS  Google Scholar 

  24. M.M. Patino and W.E. Walden, Cloning of a functional cDNA for the rabbit ferritin mRNA repressor protein. Demonstration of a tissue-specific pattern of expression, J.Biol.Chem. 267: 19011–19016 (1992).

    PubMed  CAS  Google Scholar 

  25. E.W. Müllner, S. Rothenberger, A.M. Müller, and L.C. Kühn, In vivo and in vitro modulation of the mRNA-binding activity of iron-regulatory factor. Tissue distribution and effects of cell proliferation, iron levels and redox state, Eur.J.Biochem. 208: 597–605 (1992).

    Article  PubMed  Google Scholar 

  26. T.A. Rouault, C.D. Stout, S. Kaptain, J.B. Harford, and R.D. Klausner, Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications, Cell 64: 881–883 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. S. Kaptain, W.E. Downey, C. Tang, C. Philpott, D. Haile, D.G. Orloff, J.B. Harford, T.A. Rouault, and R.D. Klausner, A regulated RNA binding protein also possesses aconitase activity, Proc.Natl.Acad. Sci.USA 88: 10109–10113 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. M.C. Kennedy, L. Mende-Mueller, G.A. Blondin, and H. Beinert, Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein, Proc.Natl.Acad.Sci.USA 89: 11730–11734 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. H. Beinert and M.C. Kennedy, Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes, Eur.J.Biochem. 186: 5–15 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. A. Constable, S. Quick, N.K. Gray, and M.W. Hentze, Modulation of the RNA-binding activity of a regulatory protein by iron in vitro: Switching between enzymatic and genetic function? Proc.Natl.Acad.Sci.USA 89: 4554–4558 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. D.J. Haile, T.A. Rouault, C.K. Tang, J. Chin, J.B. Harford, and R.D. Klausner, Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: Role of the iron-sulfur cluster, Proc.Natl.Acad.Sci.USA 89: 7536–7540 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. D.J. Haile, T.A. Rouault, J.B. Harford, M.C. Kennedy, G.A. Blondin, H. Beinert, and R.D. Klausner, Cellular regulation of the iron-responsive element binding protein: Disassembly of the cubane ironsulfur cluster results in high-affinity RNA binding, Proc.Natl.Acad.Sci.USA 89: 11735–11739 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. A. Emery-Goodman, H. Hirling, L. Scarpellino, B. Henderson, and L.C. Kühn, Iron regulatory factor expressed from recombinant baculovirus: conversion between the RNA-binding apoprotein and Fe-S cluster containing aconitase, Nucleic Acids Res. 21: 1457–1461 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. G.E. Smith, G. Ju, B.L. Ericson, J. Moschera, H.-W. Lahm, R. Chizzonite, and M.D. Summers, Modification and secretion of human interleukin 2 produced in insect cells by a baculovirus expression vector, Proc.Natl.Acad.Sci.USA 82: 8404–8408 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. B. Neupert, N.A. Thompson, C. Meyer, and L.C. Kühn, A high yield affinity purification method for specific RNA-binding proteins: isolation of the iron regulatory factor from human placenta, Nucleic Acids Res. 18: 51–55 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. M.W. Hentze, T.A. Rouault, J.B. Harford, and R.D. Klausner, Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction, Science 244: 357–359 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. D.B. Smith and K.S. Johnson, Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase, Gene 67: 31–40 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. L. Zheng, M.C. Kennedy, H. Beinert, and H. Zalkin, Mutational analysis of active site residues in pig heart aconitase, J.Biol.Chem. 267: 7895–7903 (1992).

    PubMed  CAS  Google Scholar 

  39. M.C. Kennedy and H. Beinert, The state of cluster SH and S2- of aconitase during cluster interconversions and removal. A convenient preparation of apoenzyme, J.Mol.Chem. 263: 8194–8198 (1988).

    CAS  Google Scholar 

  40. J.-C. Drapier and J.B. Hibbs, Jr., Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prostethic group and is reversible, J.Clin Invest. 78: 790–797 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. U. Testa, L.C. Kühn, M. Petrini, M.T. Quaranta, E. Pelosi, and C. Peschle, Differential regulation of iron regulatory element-binding protein(s) in cell extracts of activated lymphocytes versus monocytesmacrophages. J. Biol. Chem. 266: 13925–139310 (1991).

    PubMed  CAS  Google Scholar 

  42. S. Teixeira and L.C. Kühn, Post-transcriptional regulation of the transferrin receptor and 4F2 antigen heavy chain mRNA during growth activation of spleen cells, Eur.J.Biochem. 202: 819–826 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. C. Seiser, S. Teixeira, and L.C. Kühn, Interleukin-2-dependent transcriptional and post-transcriptional regulation of transferrin receptor mRNA, J.Biol.Chem. 268: 13074–130810 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kühn, L.C., Hirling, H., Henderson, B., Emery-Goodman, A., Neupert, B., Kaldy, P. (1994). The Structure and Function of Iron Regulatory Factor. In: Hershko, C., Konijn, A.M., Aisen, P. (eds) Progress in Iron Research. Advances in Experimental Medicine and Biology, vol 356. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2554-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2554-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6090-2

  • Online ISBN: 978-1-4615-2554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics