Skip to main content

Quantization as an Inhomogeneous Wave Effect

  • Chapter
Waves and Particles in Light and Matter

Abstract

This paper attempts to clarify the origin of quantization defined by the Planck’s constant ħ. By introducing the concept of inhomogeneous standing waves, one can derive the Planck-Einstein relation E = ħω and the de Broglie relation p = ħk and explain why quantization can be interpreted as a wave effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cornille,“On the meaning of special relativity in the earth frame,” PhysicsEssays 5, 262 (1992).

    ADS  Google Scholar 

  2. P. Cornille, “On thepropagation of inhomogeneous waves,” J. Phys. D 23, 129 (1990).

    Article  ADS  Google Scholar 

  3. P. Cornille, A. Lakhtakia, ed., Essays on the Formal aspects ofElectromagnetic Theory, (WorldScientific, Singapore, 1993).

    Google Scholar 

  4. P. Cornille,“Wave hydrodynamics of matter and radiation,” submitted forpublication.

    Google Scholar 

  5. I.M. Besieris,A.M. Shaarawi, and R.W. Ziolkowski, “A bidirectional traveling plane waverepresentation of exact solutions of the scalar wave equation,” J.Math. Phys. 30, 1254 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A.M. Shaarawi, I.M. Besieris, andR.W. Ziolkowski, “A novel approach to the synthesis of nondispersive wavepacket solutions to the Klein-Gordon and Dirac equations,” J. Math.Phys. 31, 2511 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P. Hillion,“Nondispersive solutions of the Klein-Gordon equation,” J. Math.Phys. 33, 1817 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. P. Hillion, “Nondispersivesolutions-of the Dirac equation,” J. Math. Phys. 33, 1822 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P. Hillion,“TheCourant-Hilbert solutions of the wave equation,” J. Math. Phys. 33,2749 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. P. Hillion,“Approximation of the scalar focus wave modes,” J. Opt. Soc. Am. 9,137 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Cornille,“Is the physical world built upon waves?” to appear in PhysicsEssays 6 (1993).

    Google Scholar 

  12. S. Olariu andI.I. Popescu, “The quantum effects of electromagnetic fluxes,” Rev.Mod. Phys. 17, 339 (1985).

    Article  ADS  Google Scholar 

  13. J. Molcho andD. Censor, “A simple derivation and an example of Hamiltonian raypropagation,“ Am. J. Phys. 54, 351 (1986).

    Article  ADS  Google Scholar 

  14. P. Cornille,“La quantification est-elle un effet ondulatoire?” Ann. Fond. L.deBroglie 18, 295 (1993).

    Google Scholar 

  15. E.J. Post,“Sagnac effect,” Rev. Mod. Phys. 39, 475 (1967).

    Article  ADS  Google Scholar 

  16. L. De Broglie, Tentatived’interprétation causaleet non linéairedela mécanique ondulatoire (Gauthier-Villars, Paris, 1956).

    Google Scholar 

  17. L. De Broglie, Laréinterprétationdela mécanique ondulatoire.Collection discoursde la méthode (Gauthier-Villars, Paris, 1971).

    Google Scholar 

  18. R. Boudet,“The role of Planck’s constant in Dirac and Maxwell theories,” Ann.Phys., supplement to 14(6), 27 (1989).

    Google Scholar 

  19. R. Boudet, “La théorie classique du champ et le décalage de Lamb,”Ann. Fond. L.de Broglie, 14, 119 (1989).

    Google Scholar 

  20. A.O. Barut,“E = ħ ” Phys. Lett. A 143, 349 (1990).

    Google Scholar 

  21. J. Schwinger, “Electromagnetic massrevisited,” Found. Phys. 13, 373 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  22. R.G. Beil, “The extended classicalcharged particle,” Found. Phys. 19, 319 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  23. W.P. Allisand H. Muller,“A wave theoryof the electron,” J. Math. Phys. VI, 119 (1927).

    Google Scholar 

  24. V.L.Ginzburg, The propagation of Electromagnetic Waves in Plasmas, (Pergamon,New York, 1970).

    Google Scholar 

  25. F.S.Crawford, “Derivation of the deBroglie relationfrom the Doppler effect,” Am. J. Phys. 50, 269 (1982).

    Article  ADS  Google Scholar 

  26. R.C. Jennison, “What is anelectron?,” Wireless World 6, 42 (1979).

    Google Scholar 

  27. R.E. Prange and P. Strance, “Thesemiconducting vacuum,” Am. J. Phys. 52, 19 (1984).

    Article  ADS  Google Scholar 

  28. R. Wolter et al., J. P. Andre, Europhys.Lett. 2, 149 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cornille, P. (1994). Quantization as an Inhomogeneous Wave Effect. In: van der Merwe, A., Garuccio, A. (eds) Waves and Particles in Light and Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2550-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2550-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6088-9

  • Online ISBN: 978-1-4615-2550-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics