Skip to main content

Interaction of Lactoferrin with Sequestered Transition Metal Ions

  • Chapter
Lactoferrin

Part of the book series: Advances in, Experimental Medicine and Biology ((AEMB,volume 357))

Abstract

All living organisms require several different transition metal ions to develop, grow, and function as designed. Since many of these metal ions, like copper, zinc and iron are so reactive that the biochemical reactions dependent on these essential elements typically involve the formation of specific protein-metal ion complexes or chelates. Indeed, the absorption, transport, cellular accumulation, and steady-state molecular distribution of these transition metal ions within and between intracellular compartments would appear to be determined, in part, by a series of directional metal ion transfer events between macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hutchens TW, Yip TT. Model protein surface domains for the investigation of metal ion-dependent macromolecular interactions and biospecific metal ion transfer. Methods: A Companion to Methods in Enzymology, 1992, 4: 79–96.

    Article  CAS  Google Scholar 

  2. Hutchens TW, Nelson RW, Allen MH, Li CM, Yip TT. Peptide-metal ion interactions in solution: Detection by laser desorption time-of-flight mass spectrometry and electrospray ionization mass spectrometry. Biol. Mass Spectrom. 1992, 21: 151–159.

    Article  CAS  Google Scholar 

  3. Hutchens TW, Nelson RW, Yip TT. Recognition of transition metal ions by peptides: Identification of metal-binding peptides in proteolytic digest maps by UV laser desorption time-of-flight mass spectrometry. FEBS Letters 1992, 296: 99–102.

    Article  PubMed  CAS  Google Scholar 

  4. Hutchens TW, Allen MH, Li CM, Yip TT. Occupancy of a C2-C2 type “zinc-finger” domain by copper: Direct observation by electrospray ionization mass spectrometry. FEBS Letters 1992, 309: 170–174.

    Article  PubMed  CAS  Google Scholar 

  5. Hutchens TW, Nelson RW, Li CM, Yip TT. Synthetic metal-binding protein surface domains for metal ion-dependent interaction chromatography. I. Analysis of bound metal ions by matrix-assisted UV laser desorption time-of-flight mass spectrometry. J. Chromatogr. 1992, 604: 125–132.

    Article  PubMed  CAS  Google Scholar 

  6. Hutchens TW, Yip TT, Nelson RW. Identification of conserved protein surface metal-binding sites in related proteins by mass spectrometry. Techniques in Protein Chemistry IV, Angeletti RH, ed, Academic Press, 1993, pp. 33-40.

    Google Scholar 

  7. Yip TT, Hutchens TW. Mapping and sequence-specific identification of phosphopeptides in unfraction-ated protein digest mixtures by matrix-assisted UV laser desorption/ionization mass spectrometry. FEBS Letters 1992, 308: 149–153.

    Article  PubMed  CAS  Google Scholar 

  8. Yip TT, Hutchens TW. Protein phosphorylation: Sequence-specific identification of in vivo phosphorylation sites by MALDI-TOF mass spectrometry. Techniques in Protein Chemistry IV, Angeletti RH, ed, Academic Press, 1993, pp. 201-210.

    Google Scholar 

  9. Hutchens TW, Yip TT. Synthetic metal-binding protein surface domains for metal ion-dependent interaction chromatography. II. Immobilization of synthetic metal-binding peptides from metal ion transport proteins as a model bioactive protein surface domain. J. Chromatogr. 1992, 604: 133–141.

    Article  PubMed  CAS  Google Scholar 

  10. Hutchens TW, Yip TT. Metal ligand-induced alterations in the surface structures of lactoferrin and transferrin probed by interaction with immobilized copper(II) ions. J. Chromatogr. 1991, 536: 1–15.

    Article  PubMed  CAS  Google Scholar 

  11. Morgan WT. Human serum histidine-rich glycoprotein I. Interactions with heme, metal ions and organic ligands. Biochim. Biophys. Acta 1978, 533: 319–333.

    Google Scholar 

  12. Leung LLK, Harpel PC, Nachman RL, Rabellino EM. Histidine-rich glycoprotein is present in human platelets and is released following thrombin stimulation. Blood 1983, 62: 1016–1021.

    PubMed  CAS  Google Scholar 

  13. Morgan WT. Interactions of the histidine-rich glycoprotein of serum with metals. Biochemistry 1981, 20: 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  14. Hutchens TW, Yip TT. Identification of histidine-rich glycoprotein in human colostrum and milk. Pediatr. Res. 1992, 31: 239–246.

    Article  PubMed  CAS  Google Scholar 

  15. Blakeborough P, Salter DN, Gurr MJ. Zinc binding in cow’s milk and human milk. Biochem. J. 1983, 209:505–512.

    PubMed  CAS  Google Scholar 

  16. Ainscough EW, Brodie AM, Plowman JE. Zinc transport by lactoferrin in human milk. Am. J. Clin. Nutr. 1980,33: 1314–1315.

    PubMed  CAS  Google Scholar 

  17. Lonnerdal B. Iron and breast milk. In: Stekel A, ed. Iron Nutrition in Infancy and Childhood, New York, Raven Press, 1984, pp. 95–117.

    Google Scholar 

  18. Hegenauer J, Saltman P, Ludwig D, Ripley L, Ley A. Iron-supplemented cow milk. Identification and spectral properties of iron bound to casein micelles. J. Agric. Food Chem. 1979, 27: 1294–1300.

    Article  PubMed  CAS  Google Scholar 

  19. Gislason J, Jones B, Lonnerdal B, Hambraeus L. Iron absorption differs in piglets fed extrinsically and intrinsically 59Fe-labeled sow’s milk. J. Nutr. 1992, 122:1287–1292.

    PubMed  CAS  Google Scholar 

  20. Davidson LA, Litov RE, Lonnerdal B. Iron retention from lactoferrin-supplemented formulas in rhesus monkeys. Pediatr. Res. 1990, 27: 176–180.

    Article  PubMed  CAS  Google Scholar 

  21. Hallberg L, Rossander-Hulten L, Brune M., Gleerup A. Bioavailability in man of iron in human and cow’s milk in relation to their calcium contents. Pediatr. Res. 1992, 31: 524–527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yip, TT., Hutchens, T.W. (1994). Interaction of Lactoferrin with Sequestered Transition Metal Ions. In: Hutchens, T.W., Rumball, S.V., Lönnerdal, B. (eds) Lactoferrin. Advances in, Experimental Medicine and Biology, vol 357. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2548-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2548-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6087-2

  • Online ISBN: 978-1-4615-2548-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics