Skip to main content

Therapeutic Applications of Low Frequency Electric and Magnetic Fields

  • Chapter
Advances in Electromagnetic Fields in Living Systems

Part of the book series: Advances in Electromagnetic Fields in Living Systems ((AEFL,volume 1))

Abstract

As early as 1962 in the US and even earlier in Japan [Fukada and Yasuda, 1957], it was shown that electric potential differences appear across both living and dead bone subjected to mechanical stress. C.A.L. Bassett and R.O. Becker (1962) observed that these stress generated electrical signals decayed very slowly in comparison with similarly initiated signals in piezo-electric crystals and concluded that piezo-electric phenomena “while probably present, were not the sole cause of these potentials”. Later analysis and experiments established that the observed signals were primarily due to ion displacement within the porous regions and multiple fluid filled channels present in all bone [Anderson and Erikson, 1970; Erikson, 1976; Piekarski and Muro, 1977; Guzelsu and Demiray, 1979; Chakkalakal et al., 1980; Gross and Williams, 1982; Pienkowski and Pollack, 1983; Grodzinsky, 1983; Pollack et al. 1984]. The early observations already suggested that direct application of an externally generated voltage might have an effect on bone development. This was shown to be the case by Bassett, Pawluk and Becker (1964) who found that a DC current of the order of 1 µA (corresponding to a current density of approximately 0.01 A/m2) produced massive osteogenesis near the cathode when electrodes were implanted into the femur of living dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron R.K., Ciombor D.M and Grant J., Stimulation of Experimental Endochondral Ossification by Low-Energy Pulsing Electromagnetic Fields. J. Bone and Mineral Research 4–2, 227–233, 1989.

    Article  CAS  Google Scholar 

  • Aaron R. K. and Steinberg E., Electrical Stimulation of the Femoral Head. Seminars in Arthroplasty 2–3, 214–224, 1991.

    PubMed  CAS  Google Scholar 

  • Adair K.R., Constraints on biological effects of weak extremely low frequency electromagnetic fields. Physical Review A, 1039–1048, 1991.

    Google Scholar 

  • Adair R.K., Criticism of Lednev’s Mechanism for the Influence of Weak Magnetic Fields on Biological Systems. Bioelectromagnetics, 13, 231–235, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. and Eriksson C.. Piezoelectric properties of dry and wet bone, Nature 227, 491–492, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Albertini A., Zucchini P., Noera G., Cadossi R. and Pierangeli A., Effect of PEMF on Heart Ischemic Injury in Rats. Transactions Bioelectric Repair and Growth Society, XI, 47, 1991.

    Google Scholar 

  • Bassett C.A.L., Biology of Fracture Repair, Nonunion and Pseudoarthrosis. In “Compilations of Fracture Management” (Gossling, H.R. and Pillsbury, S.L., eds.). J. B Lippincott, New York, pp 1–8, 1984.

    Google Scholar 

  • Bassett, C.A.L., Bioelectromagnetics in the Service of Medicine. Bioelectromagnetics 13, 7–17, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C.A.L. and Becker, R.O., Generation of Electric Potentials by Bone in Response to Mechanical Stress. Science 137, 1063, 1963.

    Article  Google Scholar 

  • Bassett, C.A.L., Pawluk R. J. and Becker R.O.. Effects of Electric Currents on Bone in Vivo, Nature204, 652, 1964.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C.A.L., Pawluck, R.J. and Pilla, A.A., Augmentation of bone repair by inductively coupled electromagnetic fields. Science, 184, 575–577, 1974a.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C.A.L., Pawluck R.J. and Pilla A.A., Acceleration of fracture repair by electromagnetic fields. A surgically non-invasive method. Ann.. N.Y. Acad. Sci. 238, 242–262, 1974b.

    Article  PubMed  CAS  Google Scholar 

  • Bassett C.A. L., Mitchell S.N., Norton L., Caulo N. and Gaston S.R., Electro-magnetic repairs of nonunions, pp. 605–630 in “Electrical Properties of Bone and Cartilage” (C.T. Brighton, J. Black and S. R. Pollack, eds), Grime and Stratton, New York, London, Toronto, Sydney, 1979.

    Google Scholar 

  • Becker R.O. and Spadaro J.A., Experience with Low-Current/Silver Electrode Treatment of Nonunion, pp. 631–638 in “Electrical Properties of Bone and Cartilage” (Brighton C.T., Black J., Pollack S.R., eds). Grune and Stratton, New York, London, Toronto, Sydney, 1979.

    Google Scholar 

  • Bentall R.H.C., Low-level pulsed radiofrequency fields and the treatment of soft-tissue injuries. Bioelectrochemistry and Bioenergetics 16, 531–548, 1986.

    Article  Google Scholar 

  • Blank M., Na-, K-ATPase function in alternating electric fields. FASEB Journal 6, 2434–2438 (April), 1992.

    PubMed  CAS  Google Scholar 

  • Binder A., Parr G., Hazelman B. and Fitton-Jackson S., Pulsed electromagnetic field therapy of persistent rotator cuff tendinitis. A double-blind controlled clinical assessment. Lancet 695–698, March 31, 1984.

    Google Scholar 

  • Branden C. and Tooze J., “Introduction to Protein Science” pp. 222, 223. Garland Publishing, Inc. New York and London, 1991.

    Google Scholar 

  • Brighton C. T., Friederberg Z. B. and Black J., Evaluation of the use of Constant Direct Current in the Treatment of Nonunion, pp 519–545 in “Electrical Properties of Bone and Cartilage” (Brighton C. T., Black J., Pollack S.R., eds). Grune and Stratton, New York, London, Toronto, Sydney, 1979.

    Google Scholar 

  • Brighton C.T., Black J., Friedberg Z.B. and Esterhai L., A Multicenter Study of the Treatment of Non-Union with Constant Current. J. Bone and Joint Surgery 63A, 1, 1981.

    Google Scholar 

  • Brighton C.T. and Pollack S.R., Treatment of Recalcitrant Non-Union with Capacitively Coupled Electric Field. A Preliminary Report, J. Bone and Joint Surgery 67 94) 577, 1985.

    CAS  Google Scholar 

  • Cameron H., Electrical Bone Growth Stimulation in Spine Fusion. Canadian Orthop. Res. Society, Part II, Proceedings on Bioelectrical Repairs and Growth, pp. 62–68, 1985.

    Google Scholar 

  • Canady, D.J. and Lee R.C., Scientific basis for clinical applications of electric fields in soft tissue repair, in “Electromagnetics in Medicine and Biology” [Brighton C.T., Pollack S.R., eds]. San Francisco Press, 275–280, 1991.

    Google Scholar 

  • Chakkalakal, D.A., Johnson, M.V., Harper, R.A. and Katz, J. L., Dielectric properties of fluid-saturated bone. IEEE Trans. Biomed. Eng. 27, 95–100, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Cooper M.S., Gap Junctions Increase the Sensitivity of Tissue Cells to Exogenous Electric Fields. J. Theor Biol., 111, 123–130, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Einstein A., “Investigation on the Theory of Brownian Movement” (M.R. Furth and A.D. Cowper, eds.). Dover Publications, New York, p 33, 1956 (originally published 1905 in German).

    Google Scholar 

  • Ellis W., Pulsed Subcutaneous Electrical Stimulation in Spinal Cord Injury. Bioelectromagnetics 8, 159–164, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson, C., Bone morphogenesis and surface charge. Clin. Orthopaedics 121, 295–302, 1976.

    Google Scholar 

  • Fitzsimmons R.J., Farley J., Adey W.R. and Baylink D.J., Embrionic bone matrix formation is increased after exposure to a low amplitude capacitively coupled electric field in vitro. Biochimica et Biophysica Acta 882, 51–56, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimmons R. J., Magee F. P. Weinstein A. and Baylink D., An EM Field Tuned to Calcium Increased Release of Mitogen Activity and Cell Proliferation. Bioelectromagnetics Society, 13th Ann. Meeting Abstract Book, p 101, 1991a.

    Google Scholar 

  • Fitzsimmons R., Baylink D., Magee F. P. and Weinstein A. M., Electromagnetic Field Stimulated Bone Cell Proliferation (Abstract). J. Bone and Mineral Research 6(Supplement 1) August 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Foster K.R. and Schwan H.P., Dielectric Properties of Tissue, p. 88 in “CRC Handbook of Biological Effects of Electromagnetic Fields” (C. Polk and E. Postow, eds.) CRC Press, Boca Raton, FL 1986.

    Google Scholar 

  • Freedman A. M., Bryant G. C., Hyde G. I. and Luce E. A., Pulsed Electromagnetic Field Enhancement of Rat Skin Flap Survival. Trans. Bioelectrical Repair and Growth Society 5, 40, 1985.

    Google Scholar 

  • Fukada, E. and Yasuda I., On the Piezoelectric Effect in Bone. J. Phys. Soc. Japan 12, 1158, 1957.

    Article  Google Scholar 

  • Goodman R. and Henderson S. A., Transcription and translation in cells exposed to extremely low frequency electromagnetic fields. Bioelectrochemistry and Bioenergetics 25, 335–355. 1991.

    Article  CAS  Google Scholar 

  • Gossling H.R., Bernstein R.A. and Abbott J., Treatment of Ununited Tibial Fractures, A Comparison of Surgery and Pulsed Electromagnetic Fields (PEMF). Orthopaedics 15–6, 711–719, 1992.

    CAS  Google Scholar 

  • Grodzinsky, A. J., Electromechanical and Physiochemical Properties of Connective Tissue. CRC Critical Reviews in Biomedical Engineering, 9–2, 133–199, 1983.

    CAS  Google Scholar 

  • Gross, D. and Williams, W. S., Streaming potential and the electromechanical response of physiologically moist bone. J. Biomechanics 15, 227–295, 1982.

    Article  Google Scholar 

  • Guzelsu, N. and Demiray H., Electromechanical properties and related models of bone tissues - a review. Int. J. Eng. Sci., Recent Adv. 17, 813, 1979.

    Google Scholar 

  • Herbst E., Response of Rat Skin Flaps to Sinusoidal Electromagnetic Fields. Proc. EEEE Engineering in Medicine and Biology Society, Ninth Annual Conference, 0075–0076, 1987.

    Google Scholar 

  • Hoffman M., Motor Molecules on the Move. Science 256(26 June) 1758–1760, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ieran M., Zaffuto S., Bagnacani M., Annovi M., Moratti A. and Cadossi R., Effect of Low Frequency Pulsing Electromagnetic Fields on Skin Ulcers of Venous Origin in Humans; A double-blind Study. J. Orthop Research, 8–2, 276–282, 1990.

    Article  CAS  Google Scholar 

  • Ito H. and Bassett C.A.L., Effect of Weak, Pulsing Electromagnetic Fields on Neural Regeneration in the Rat. Clinical Orthopaedics. 181, 283–290, 1983.

    Google Scholar 

  • Kirschvink J.L., Comments on “Constraints on biological effects of weak extremely low frequency electromagnetic fields.” Physical Review A, 46–4 (15 August) 1992.

    Google Scholar 

  • Kirschvink J. L., Kobayashi-Kirschvink A., and Woodford B. J., Magnetic biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 89, 1992.

    Google Scholar 

  • Kort J, Ito H, Bassett C.A.L., Effects of pulsing electromagnetic fields on peripheral nerve regeneration. J. Bone Jt. Surg. Orthop. Trans. 4, 238, 1980.

    Google Scholar 

  • Kraus W., Magnetfeld therapie und magnetisch induzierte Elektrostimulation in der Orthopadie. Orthopade 13, 78–92, 1984.

    PubMed  CAS  Google Scholar 

  • Lavine, L.S. and Grodzinsky A. J., Electrical Stimulation of Repair of Bone. J. Bone Joint Surgery, 69–4, 626–630, 1987.

    CAS  Google Scholar 

  • Lechner F., Ascherl R., Kraus W., Treatment of pseudoarthroses with electrodynamic potentials of low frequency range. Clin Orthop. 71–81, 1981.

    Google Scholar 

  • Lednev V.V., Possible Mechanism for the Influence of Weak Magnetic Fields on Biological Systems. Bioelectromagnetics 12, 71–75, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Liboff A. R. and McLeod B. R., Kinetics of Channelized Membrane Ions in Magnetic Fields. Bioelectromagnetics 9, 39–51 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Liburdy R.P., Calcium signaling in lymphocytes and ELF fields. FEBS 301–1, 53–59, 1992.

    Article  CAS  Google Scholar 

  • Luben R.A. Effects of Low Energy Electromagnetic Fields on Signal Transduction by G Protein Linked Receptors. “Proc., First World Congress for Electricity and Magnetism in Biology and Medicine” San Francisco Press, 1992 (in press). Abstract on p. 4 of Abstract Book, World Congress EMBM, 1992.

    Google Scholar 

  • Luce E.A and Bryant G.C., Dose-Response of Electromagnetic Field Current in Rat Skin Flap Survival. Trans. Bioelectrical Repair and Growth Society 6, 72, 1986.

    Google Scholar 

  • MacDonald D.K.C., “Noise and Fluctuations: An Introduction”. J. Wiley, New York, p 23, 1962.

    Google Scholar 

  • Magee F.P., Fitzsimmons R.J., Baylink D.J., Ryaby J. T. and Weinstein A.M., Prevention of Hormonal Osteoporosis Using Ion Specific Magnetic Fields. P-83 in Abstract Book, “First World Congress for Electricity and Magnetism in Biology and Medicine, 1992.

    Google Scholar 

  • McFarlane R.M., DeYoung G. and Henry R.A., The Design of a Pedicle Flap in the Rat to Study Necrosis and its Prevention. Plast. Reconstruct. Surgery 5, 177, 1965.

    Article  Google Scholar 

  • McK Ciombor D., Aaron R., Fisher H., Polk C., Gautreau D. and Cherlin D., Effect of 15 Hz Sinusoidal Magnetic Field on Cartilage Development in vivoDepends Non-Linearly on Duration of Daily Stimulation. Project Resumes, The Annual Review of Research on Biological Effects of 50 and 60 Hz Electric and Magnetic Fields. (U.S. Dept. of Energy, Office of Energy Management). P-8, 1991.

    Google Scholar 

  • McLeod K. J., Lee R. C. and Ehrlich H. P., Frequency Dependence of Electric Field Modulation of Fibroblast Synthesis. Science 236(12 June), 1465–1469, 1987.

    Article  PubMed  CAS  Google Scholar 

  • McLeod K. J. and Rubin C.T., Frequency Specific Modulation of Bone Adaptation by Induced Electric Fields. J. Theor. Biol. 145, 385–396, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Nerubay J., Marganit B., Bubis J. J., Tadmar A. and Katznelson A., Stimulation of Bone Formation by Electrical Current on Spinal Fusion. Spine 11, 167, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Orgel M.G., O’Brien J.O. and Murray H.M., Pulsing Electromagnetic Field Therapy in Nerve Regeneration: An Experimental Study in the Cat. Plastic and Reconstructive Surgery, 173–182, February 1984.

    Google Scholar 

  • Ottani V., DePasquale V., Govoni P., Franchi M., Zaniol P. and Ruggeri A., Effects of Pulsed Extremely-Low-Frequency Magnetic Fields on Skin Wounds in the Rat. Bioelectromagnetics 9, 53–62, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Papoulis A., “The Fourier Integral and its Applications.” McGraw-Hill Book Co., New York, 1962.

    Google Scholar 

  • Parkinson W. C. and Sulik G. L., Diatom Response to Extremely Low-Frequency Magnetic Fields. Radiation Research 130, 319–330, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Piekarski, K. and Munro, P., Transport mechanisms operating between blood supply and osteocytes in long bones. Nature 269, 80–82, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Pienkowski, D. and Pollack, S.R., The origin of stress generated potentials in fluid saturated bone. J. Orthop. Res. 1, 30–41, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Polk C., Physical Mechanisms by which Low-Frequency Magnetic Fields can Affect the Distribution of Counterions on Cylindrical Biological Cell Surfaces. J. Biol. Phys. 14, 3–8, 1986.

    Article  CAS  Google Scholar 

  • Polk, C. and Song J. H., Electric Fields Induced by Low Frequency Magnetic Fields in Inhomogeneous Biological Structures that are Surrounded by an Electric Insulator. Bioelectromagnetics 11, 235–249, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Polk C., Counter-ion polarization and low frequency, low electric field intensity biological effects. Bioelectrochem. and Bioenergetics 8, 267–277, 1992a.

    Google Scholar 

  • Polk C., Dosimetric Extrapolations across Biological Systems: Dosimetry of ELF Magnetic Fields. Bioelectromagnetics 13-S1, 1992b.

    Google Scholar 

  • Pollack, S.R., Petrov, N., Salzstein R., Brankov G. and Blagoeva, R., An Anatomical Model for Streaming Potentials in Osteons. J. Biomechanics 17–8, 627–636, 1984.

    Article  CAS  Google Scholar 

  • Pollack S.R. and Brighton C.T., Dosimetry in Electrical Stimulation. Bioelectric Repair and Growth Society Transactions IX-40, 1989.

    Google Scholar 

  • Robertson B. and Astumian R.D., Frequency dependence of catalyzed reactions in a weak oscillating field. J. Chem. Phys. 94, 7414–7419, 1991.

    Article  CAS  Google Scholar 

  • Rubin C.T., McLeod K.J, and Lanyon L.E., Prevention of Osteoporosis by Pulsed Electromagnetic Fields. J. Bone and Joint Surgery 71-A(3), 411–418, 1989.

    Google Scholar 

  • Sharrard W. J. W., A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J. Bone Joint Surg. (Br.) 72-B. 347–355, 1990.

    Google Scholar 

  • Sisken B.F., Electric and Pulsed Electromagnetic Field Effects on Nerve Tissue Regeneration, in “Electromagnetics in Medicine and Biology” (Brighton C.T., Pollack, S.R. eds.) San Francisco Press, 259–273, 1991.

    Google Scholar 

  • Sisken B. F., McLeod B. and Pilla A. A., PEMF, direct current and neuronal regeneration: effect of field geometry and current density. J. Bioelectricity 3, 81–101, 1984.

    Google Scholar 

  • Sisken B. F. and Herbst E., Wound Healing: Electrical and Electromagnetic Fields. Proc. 12th Ann. Intern. Conf. IEEE Engineering in Medicine and Biology Society, 4/5, 1533, 1990a.

    Google Scholar 

  • Sisken B.F., Kanje M., Lundborg G. and Kurtz W., Pulsed electromagnetic fields stimulate nerve regeneration in vitroand in vivo. Restorative Neurology and Neuroscience, 1, 303–309, 1990b.

    PubMed  CAS  Google Scholar 

  • Smith S. D., McLeod B. R., Liboff A. R. and Cooksey K., Cyclotron Resonance and Diatom Mobility. Bioelectromagnetics 8, 215–227, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Tsong T.Y., Electric modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transduction. Annu. Rev. Biophys. Biophys. Chem 19, 83–106 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Van Amelsfort A.M.J., “An Analytical Algorithm for Solving Inhomogeneous Electromagnetic Boundary-Value Problems for a Set of Coaxial Circular Cylinders.” James Clerk Maxwell Foundation, Eindhoven, The Netherlands, 1990.

    Google Scholar 

  • Weaver J.C. and Astumian R.D., The Response of Living Cells to Very Weak Electric Fields: The Thermal Noise Limit. Science, 247, 459–562 (26 January), 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wilson D. H., Treatment of soft tissue injuries by pulsed electrical energy. Br. Med. J., 1, 269–70, 1972.

    Article  Google Scholar 

  • Wilson D. H., Jagadeesh P., Newman P. and Harrison D., The effects of pulsed electromagnetic energy on peripheral nerve regeneration. Ann. NY Acad. Sci. 238, 575–85, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Yen-Patton A., Patton W. F., Shepro D. and Bassett, C.A.L., Stimulation of Human Endothelial Cell Angiogenesis and Proliferation by a Clinically Relevant Pulsed Electromagnetic Field. Bioelectromagnetics Society, 10th Annual Meeting Abstracts, 21, 1988.

    Google Scholar 

  • Yost M.G. and Liburdy R.P., Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS 296–2, 117–122, 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Polk, C. (1994). Therapeutic Applications of Low Frequency Electric and Magnetic Fields. In: Lin, J.C. (eds) Advances in Electromagnetic Fields in Living Systems. Advances in Electromagnetic Fields in Living Systems, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2542-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2542-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6084-1

  • Online ISBN: 978-1-4615-2542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics