Physics of Noble Gas X-Ray Detectors: A Monte Carlo Simulation Study

  • Teresa H. V. T. Dias
Part of the NATO ASI Series book series (NSSB, volume 326)

Abstract

As it is well known x-rays interact easily with matter through multiple atomic processes involving the production of electrons. Most x-ray detection devices are based on this effect the absorption of x-ray photons with energy Exr translates into a number N of primary electrons (i.e. subionization electrons). The filling of these detectors is often a gas chosen to have a high cross section for photoelectric effect. The measurement of the energy Exr is basically obtained in terms of the number of primary electrons produced: the position of a peak corresponding to monoenergetic x-rays is related to the average number of electrons, \(\overline{\text {N}}\), while its width is related to the fluctuations in N. In principle Exr is proportional to \(\overline{\text {N}}\); however energy linearity does not always hold as it will be shown later.

Keywords

Dioxide Argon Helium Carbon Monoxide Deuterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, R.D., Leimann, E. A. and Peacock, A., 1977, The nature of the light produced inside a gas scintillation proportional counter, Nucl. Instrum. Methods 140:371.ADSCrossRefGoogle Scholar
  2. Bowe, J.C., 1960, Drift velocity of electrons in nitrogen, helium, neon, argon, krypton and xenon, Phys. Rev. 117:1411ADSCrossRefGoogle Scholar
  3. Brooks, H.L., Cornell, M.C., Fletcher, J., Littlewood, I.M. and Nygaard, K.J., 1982, Electron drift velocities in xenon, J. Phys. D: Appl. Phys. 15.L51ADSCrossRefGoogle Scholar
  4. Butler, R.C. and Scarsi, L., 1990, The SAX mission, SPIE 1344:465.ADSCrossRefGoogle Scholar
  5. Carlson, T.A., Hunt, W.E. and Krause, M.O., 1966, Relative abundances of ions formed as the result of inner shell vacancies in atoms, Phys. Rev. 151:41ADSCrossRefGoogle Scholar
  6. Conde, C.A.N., Requicha-Ferreira, L. and Ferreira, M.F., 1977, The secondary scintillation output of xenonin a uniform field gas proportional scintillation counter, IEEE Trans. Nucl. Sci. NS24:221ADSCrossRefGoogle Scholar
  7. Culhane, J.L., 1991, Position sensitive detectors in X-ray astronomy, Nucl. Instrum. Methods A 310:1.ADSCrossRefGoogle Scholar
  8. Cumpstey, D.E. and Vass, D.G., 1980, The scintillation process in gas proportional scintillation detectors with uniform electric fields, Nucl. Instrum. Methods 171:473.ADSCrossRefGoogle Scholar
  9. Dias, T.H.V.T., Santos, F.P., and Conde, C.A.N., 1991a, The primary electron cloud in xenon for x-rays in the 0.1 to 10 keV range, Nucl. Instrum. Methods A 310:137ADSCrossRefGoogle Scholar
  10. Dias, T.H.V.T., Santos, F.P., Stauffer, A.D., and Conde, C.A.N., 1991b, The Fano factor in gaseous xenon: a Monte Carlo calculation for x-rays in the 0.1 to 25 keV energy range, Nucl. Instrum. Methods A 307:341ADSCrossRefGoogle Scholar
  11. Dias, T.H.V.T., Santos, F.P., Stauffer, A.D., and Conde, C.A.N., 1992, Distortion effects in soft x-ray energy spectra for xenon gaseous detectors: a Monte Carlo simulation study, Phys. Rev. A 46:237.ADSCrossRefGoogle Scholar
  12. Dias, T.H.V.T., Santos, F.P., Stauffer, A.D., and Conde, C.A.N., 1993, A Monte Carlo simulation of x-ray absorption and electron drift in gaseous xenon, Phys. Rev. A 48:2887.ADSCrossRefGoogle Scholar
  13. Dias, T.H.V.T., Stauffer, A.D. and Conde, C.A.N., 1986, A unidimensional Monte Carlo simulation of electron drift velocities and electroluminescence in argon, krypton and xenon, J. Phys. D: Appl. Phys. 19:527ADSCrossRefGoogle Scholar
  14. Doke, T., Ishida, N. and Kase, M., 1992, Fano factors in rare gases and their mixtures, Nucl. Instrum. Methods B 63:373ADSCrossRefGoogle Scholar
  15. Dutton, J., 1975, A survey of electron swarm data, J. Phys. Chem. Ref. Data 4:577.ADSCrossRefGoogle Scholar
  16. dos Santos, J.M.F, Conde, C.A.N, and Bento, A.C., 1993a, The energy linearity of gaseous xenon radiation detectors for x-rays with energies between 2 and 60 keV: experimental results, Nucl. Instrum. Methods A 324:611.ADSCrossRefGoogle Scholar
  17. dos Santos, J.M.F, Conde, C.A.N, and Bento, A.C., 1993b, A simple, inexpensive gas proportional scintillation counter for x-ray fluorescence analysis, X-Ray Spectrom. 22:328CrossRefGoogle Scholar
  18. Favata, F., Smith, A., Bavdaz, M. and Kowalski, T.Z., 1990, Light yield as a function of gas pressure and electric field in gas scintillation proportional counters, Nucl. Instrum. Methods A 294:595.ADSCrossRefGoogle Scholar
  19. Fraga, M.M.F.R., Ferreira, C.M., Loureiro, J. and Leite, M.S.P., Excitation cross sections in Kr and Xe, ESCAMPIG1990 (Orleans, France, 28–31 Aug)Google Scholar
  20. Frost, L.S. and Phelps, A.V., 1964, Momentum transfer cross sections for slow electrons in He, Ar, Kr and Xe from transport coefficients, Phys. Rev. A 136:1538.ADSCrossRefGoogle Scholar
  21. Hamilton, T.T., Hailey, C.J., Ku, W.H.-M. and Novick, R., 1980, A high resolution gas scintillation proportional counter for studying low energy cosmic x-ray sources, IEEE Trans. Nucl. Sci. NS27:190ADSCrossRefGoogle Scholar
  22. Hashimoto, T. and Nakamura, Y., 1990, Electron swarm parameters in xenon and its momentum transfer cross section, Papers of Gas Discharge Technical Committee ED-90–61 (Japan:IEE)Google Scholar
  23. Huang, S.S.S. and Freeman, G.R., 1978, Electron mobilities in gaseous, critical and liquid xenon: density, electric field and temperature effects: quasilocalization, J. Chem. Phys. 68:1355.ADSCrossRefGoogle Scholar
  24. Hunter, S.R., Carter, J.G. and Christophorou, L.G., 1988, Low-energy electron drift and scattering in krypton and xenon, Phys. Rev. A 38:5539ADSCrossRefGoogle Scholar
  25. Inokuti, M., Kowari, K. and Kimura M., 1992, Statistical fluctuations in the yield of ionization due to protons or a particles, Phys. Rev. A 45:4499.ADSCrossRefGoogle Scholar
  26. Inoue, H., Koyama, K., Matsuoka, M., Ohashi, T., Tanaka, Y. and Tsunemi, H., 1978, Properties of gas scintillation proportional counters, Nucl. Instrum. Methods 157:295.ADSCrossRefGoogle Scholar
  27. Knoll, G.F., 1989, “Radiation Detection and Measurement”, Wiley & Sons, New York.Google Scholar
  28. Koizumi, T., Shirakawa, E. and Ogawa, I., 1986, Momentum transfer cross sections for low energy electrons in krypton and xenon from characteristic energies, J. Phys. B: At. Mol. Phys. 19:2331ADSCrossRefGoogle Scholar
  29. Kowalski, T.Z., Smith, A. and Peacock, A., 1989, Fano factor implications from gas scintillation proportional counter measurements, Nucl. Instrum. Methods A 279:567.ADSCrossRefGoogle Scholar
  30. Lamb, P., Manzo, G., Re, S., Boella, G., Villa, G., Andresen, R., Sims, M.R. and Clark, G.F., 1987, The gas scintillation proportional counter in the spacelab environment: in-flight performance and post-flight calibration, Astrophys. & Space Sci. 136:369ADSCrossRefGoogle Scholar
  31. Lowke, J.J. and Parker Jr., J.H., 1969, Theory of electron diffusion parallel to electric fields. II. Application to real gases, Phys. Rev. 181:302ADSCrossRefGoogle Scholar
  32. McEachran, R.P. and Stauffer, A.D., 1986, Spin polarisation of electrons elastically scattered from xenon, J. Phys. B: At. Mol. Phys. 19:3523.ADSCrossRefGoogle Scholar
  33. McEachran, R.P. and Stauffer, A.D., 1987, Relativistic low energy elastic and momentum transfer cross sections for electron scattering from xenon, J. Phys. B: At. Mol. Phys. 20:3483ADSCrossRefGoogle Scholar
  34. Mukoyama, T., 1986, Monte Carlo simulation of vacancy cascade in xenon, J. Phys. Soc. Japan 55:3054ADSCrossRefGoogle Scholar
  35. Pack, J.L., Voshall, R.E. and Phelps, A.V., 1962, Drift velocities of slow electrons in krypton, xenon, deuterium, carbon monoxide, carbon dioxide, water vapour, nitrous oxide and ammonia, Phys. Rev. 127:2084ADSCrossRefGoogle Scholar
  36. Peacock, A., Taylor, B.G., White, N., Courvoisier, T. and Manzo, G., 1985, The in-orbit performance of the Exosat gas scintillation proportional counter, IEEE Trans. Nucl. Sci. NS32:108ADSCrossRefGoogle Scholar
  37. Perez-Mendez, L.B.L.V., 1987, Radiation detectors in medicine, in “Instrumentation in Elementary Particle Physics”, C.W. Fabjan and J.E. Pilcher eds., World Scientific, New Jersey, p. 419Google Scholar
  38. Pleasonton, F. and Snell, A.H., 1957, Ionization following internal conversion in xenon, Proc. Royal Soc. A 241:141ADSCrossRefGoogle Scholar
  39. Policarpo, A.J.P.L., 1981, Light production and gaseous detectors, Physica Scripta 23:539ADSCrossRefGoogle Scholar
  40. Santos, F.P., Dias, T.H.V.T., Stauffer, A.D. and Conde, C.A.N., 1991, Variation of energy linearity and w value in gaseous xenon radiation detectors for x-rays in the 0.1 to 25 keV energy range: a Monte Carlo simulation study, Nucl. Instrum. Methods A 307:347ADSGoogle Scholar
  41. Santos, F.P., Dias, T.H.V.T., Stauffer, A.D. and Conde, C.A.N., 1992, Xenon charge distribution resulting from x-ray absorption in xenon: a Monte Carlo simulation, Proc. ofSASP 92, D. Bassi, M. Scotoni, and P. Tosi, ed., Università di Trento, p. 2–97Google Scholar
  42. Santos, F.P., Dias, T.H.V.T., Stauffer, A.D., and Conde, C.A.N., 1993, Tridimensional Monte Carlo calculation of the VUV electroluminescence and other electron transport parameters in xenon, to be published in J. Phys. D: Appl Phys Google Scholar
  43. Simons, D.G. and de Korte, P.A.J., 1989, Soft x-ray energy resolution and background rejection in a driftless gas scintillation proportional counter, Nucl. Instrum. Methods A 277:642ADSCrossRefGoogle Scholar
  44. Stauffer, A.D., Dias, T.H.V.T. and Conde, C.A.N, 1986, Analytical expressions for phase shifts and cross sections for low energy electron-atom scattering in noble gases, Nucl. Instrum. Methods 242:327, errata Nucl. Instrum. Methods A 256:406, 261:610ADSCrossRefGoogle Scholar
  45. Suzuki, M., Taniguchi, T., Yoshimura, N. and Tagashira, H., Momentum transfer cross section of xenon deduced from electron drift velocity data, 1992, J. Phys. D: Appl. Phys. 25:50ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Teresa H. V. T. Dias
    • 1
  1. 1.Departamento de FísicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations