Skip to main content

Polymorphic Keratins as Detected by PCR and SSCP

  • Chapter
Methods in DNA Amplification
  • 103 Accesses

Abstract

Genetic polymorphism of keratins at the protein level due to allelic variation has been described for Kl, K4, K5, and K10. In order to understand the molecular basis of the differences among the alleles of these genes, we have analyzed their N- and C-terminal domains following amplification of genomic DNA by the polymerase chain reaction. Whereas the Kl and the K10 alleles differ in size of their carboxyl-terminal V2 subdomains, the alleles of the K4 and K5 genes diverge in their amino-terminal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barletta C, Batticane N, Ragusa RM, Leube R, Peschle C and Romano V. Subchromosomal localization of two human cytokeratin genes (KRT4 and KRT15) by in situ hybridization. Cytogenet Cell Genet 1990, 54: 148–50

    Article  PubMed  CAS  Google Scholar 

  • Bonifas JM, Rothman AL, and Epstein EH. Epidermolysis bullosa simplex: Evidence in two families for keratin gene abnormalities. Science 1991, 254: 1202–5

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Syder M, Yu Q-C, Letai A, Palier AS and Fuchs E. The genetic basis of epidermolytic hyperkeratosis: A disorder of differentiation-specific epidermal keratin genes. Cell 1992, 70: 811–9

    Article  PubMed  CAS  Google Scholar 

  • Chipev CC, Korge BP, Markova N, Bale SJ, DiGiovanna JJ, Compton JG and Steinert PM. A leucine > proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyper-keratosis. Cell 1992, 70: 821–8

    Article  PubMed  CAS  Google Scholar 

  • Compton JG, DiGiovanna JJ, Santucci SK, Kearns KS, Amos CI, Abangan DL, Korge BP, McBride OW, Steinert PM and Bale SJ. Linkage of epidermolytic hyperkeratosis to the type II keratin gene cluster on chromosome 12q. Nature Genetics 1992, 1: 301–5

    Article  PubMed  CAS  Google Scholar 

  • Coulombe PA, Hutton ME, Letai A, Hebert A, Palter AS, and Fuchs E. Point mutations in human keratin 14 genes of Epidermolysis bullosa simplex patients: Genetic and functional analyses. Cell 1991, 66: 1301–11

    Article  PubMed  CAS  Google Scholar 

  • Eckert RL and Rorke EA. The sequence of the human epidermal 58-kD (#5) type II keratin reveals an absence of 5’ upstream sequence conservation between coexpressed epidermal keratins. DNA 1988, 7: 337–45

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E. Keratins as biochemical markers of epithelial differentiation. Trends Genetics 1988, 4: 277–81

    Article  CAS  Google Scholar 

  • Hatzfeld M and Weber K. A synthetic peptide representing the consensus sequence motif at the carboxy-terminal end of the rod domain inhibits intermediate filament assembly and disassembles preformed filaments. J Cell Biol 1990, 110: 1199–210

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H, Hofmann I and Franke WW. Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. J Mol Biol 1992, 223: 637–50

    Article  PubMed  CAS  Google Scholar 

  • Johnson LD, Idler WW, Zhou X-M, Roop DR and Steinert PM. Structure of a gene for the human epidermal keratin of 67 000 Dalton. Proc Natl Acad Sci USA 1985, 82: 1896–1900

    Article  PubMed  CAS  Google Scholar 

  • Korge BP, Gan S-Q, McBride OW, Mischke D, and Steinert PM. Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Proc Natl Acad Sci USA 1992a, 89: 910–914

    Article  CAS  Google Scholar 

  • Korge BP, Compton JG, Steinert PM, and Mischke D. The two size alleles of human keratin 1 are due to a deletion in the glycine-rich carboxyl-terminal V2 subdomain. J Invest Dermatol 1992b, 99: 697–702

    Article  CAS  Google Scholar 

  • Lane EB, Rugg EL, Naysaria H, Leigh IM, Heagerty AHM, Ishida-Yamamoto A, and Eady RAJ. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 1992, 356: 244–246

    Article  PubMed  CAS  Google Scholar 

  • Lersch R and Fuchs E. Sequence and expression of a type II keratin, K5, in human epidermal cells. Mol Cell Biol 1988, 8: 486–493

    PubMed  CAS  Google Scholar 

  • Lessin RS, Hübner K, Isobe M, Croce CM, and Steinert PM. Chromosomal mapping of human keratin genes: Evidence of non-linkage. J Invest Dermatol 1988, 91: 572–578

    Article  PubMed  CAS  Google Scholar 

  • Leube R, Bader BL, Bosch FX, Zimbelmann R, Achtstaetter T, and Franke WW. Molecular characterization and expression of the stratification-related cytokeratins 4 and 15. J Cell Biol 1988, 106: 1249–1261

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, and Sambrook J. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1982

    Google Scholar 

  • Mischke D and Wild G. Polymorphic keratins in human epidermis. J Invest Dermatol 1987, 88: 191–197

    Article  PubMed  CAS  Google Scholar 

  • Mischke D, Wille G, and Wild AG. Allele frequencies and segregation of human polymorphic keratins K4 and K5. Am J Hum Genet 1990, 46: 548–552

    PubMed  CAS  Google Scholar 

  • Mischke, D. Frequencies of human keratin 10 alleles. Hum Molec Biol 1993, 2: 618

    CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, and Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982, 31: 1–24

    Article  Google Scholar 

  • Orita M, Suzuki TS, and Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989, 5: 874–879

    Article  PubMed  CAS  Google Scholar 

  • Oshima RG. Intermediate filament molecular biology. Curr Opin Cell Biol 1992, 4: 110–116

    Article  PubMed  CAS  Google Scholar 

  • Parry DAD and Steinert PM. Intermediate filament structure. Curr Opin Cell Biol 1992, 4: 94–98

    Article  PubMed  CAS  Google Scholar 

  • Reis A, Küster W, Eckhardt R, and Sperling K. Mapping of a gene for epidermolytic palmoplantar keratoderma to the region of the acidic keratin gene cluster at 17q12–21. Hum Genet 1992, 90: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Rieger M and Franke WW. Identification of an orthologous mammalian cytokeratin gene. J Mol Biol 1988, 204: 841–856

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Fuchs E, Le Beau MM, Eddy RL, and Shows TB. Three epidermal and one simple epithelial type II keratin genes map to human chromosome 12. Cytogenet Cell Genet 1991, 57: 33–38

    Article  PubMed  CAS  Google Scholar 

  • Rothnagel JA, Dominey AM, Dempsey LD, Longley MA, Greenhaigh DA, Gagne TA, Huber M, Frenk E, Hohl D, and Roop DR. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 1992, 257: 1128–1139

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM and Roop DR. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 1988, 57: 593–625

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Mack JW, Korge BP, Gan S-Q, Haynes SR, and Steven AC. Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Biol Macromol 1991, 13: 130–139

    Article  PubMed  CAS  Google Scholar 

  • Sun T-T, Eichner R, Schermer A, Cooper D, Nelson WG, and Weiss RA. Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model. In: Levine A, Topp W, Vande Woude G, Watson JD (eds) Cancer Cells 1: The transformed phenotype. Cold Spring Harbor Laboratory, New York, 1984, pp 169–176

    Google Scholar 

  • Wanner R, Förster H-H, Tilmans I, and Mischke D. Allelic variations of human keratins K4 and K5 provide polymorphic markers within the type II keratin gene cluster on chromosome 12. J Invest Dermatol 1993, 100: 735–741

    Article  PubMed  CAS  Google Scholar 

  • Wild G-A and Mischke D. Variation and frequency of cytokeratin polypeptide patterns in human squamous non-keratinizing epithelium. Exp Cell Res 1986, 162: 114–126

    Article  PubMed  CAS  Google Scholar 

  • Zhou X-M, Idler WW, Steven AC, Roop DR, and Steinert PM. The sequence and structure of human keratin 10: organization and possible structures of end sequences. J Biol Chem 1988, 263: 15584–15589

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mischke, D., Wanner, R., Korge, B.P. (1994). Polymorphic Keratins as Detected by PCR and SSCP. In: Rolfs, A., Weber-Rolfs, I., Finckh, U. (eds) Methods in DNA Amplification. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2530-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2530-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44908-6

  • Online ISBN: 978-1-4615-2530-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics