Skip to main content

Polar Atmosphere and Snow Chemistry

  • Chapter
Global Atmospheric-Biospheric Chemistry

Part of the book series: Environmental Science Research ((ESRH,volume 48))

Abstract

In the last fifteen years, considerable progress has been made in understanding the occurrence, origin, pathways, history and relevance to global change of natural and anthropogenic substances in the polar troposphere. In addition, glacial snow and ice have provided historical records of tropospheric composition of greenhouse gases and of snow deposited in the polar regions. One of the most remarkable features of polar studies is the extreme geographical contrast between the Arctic and Antarctic. The Arctic troposphere is underlain by an active ocean surrounded by pollutant-emitting, industrialized continents while the Antarctic troposphere lies over a massive, 4 km thick, ice sheet surrounded by the pollution-free southern ocean. The Arctic troposphere is much more polluted (Arctic haze) than its southern counterpart and has different exposure to compounds of natural origin such as wind blown dust or marine gases and particles. The pollution has an impact on both physical and chemical climatology. Anthropogenic Arctic haze aerosols of black carbon and sulphate have a net warming influence in the north in contrast to elsewhere on the globe where (with less black carbon) they tend to offset the impact of anthropogenic greenhouse gases. Biogeochemical cycles of many substances including carbon, sulfur and nitrogen are perturbed. Compounds potentially toxic to polar ecosystems also accumulate.

Phenomena of interest in the polar regions include chemistry associated with Arctic haze pollution, the destruction of lower tropospheric ozone over the Arctic ocean at polar sunrise induced by marine halogens in the presence of sulfuric acid aerosols, oxidant chemistry of both polar tropospheres, chemical control of clouds and atmospheric energy budgets, and the relationship between glacial and atmospheric composition.

Historical records of atmospheric composition are available from glaciers and instrumental records of atmospheric optical properties and atmospheric composition. They indicate that the Arctic region has been polluted particularly in the winter-half of the year since at least the turn of the century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerodolu, F.A., L.A. Barrie, M.P. Olson, K.K. Oikawa, J. Keeler and J. Pacyna, 1993, The flux of anthropogenic metals into the Arctic from the midlatitudes in 1979/80, Atmos. Envir., in press.

    Google Scholar 

  • Barrie, L.A., 1985, Atmospheric particles: their physical and chemical characteristics and deposition processes relevant to the chemical composition of glaciers, Annals of Glaciology, 7:100–108.

    CAS  Google Scholar 

  • Barrie, L.A., 1986, Arctic air pollution: an overview of current knowledge, Atmos. Environ., 20:643–663.

    Article  CAS  Google Scholar 

  • Barrie, L.A., 1991, “Snow formation and processes in the atmosphere that influence its chemical composition,” NATO ASI Series, Vol. G28, Seasonal Snowpacks, T. Davies et al. (eds.), pgs. 1-20.

    Google Scholar 

  • Barrie, L.A. and R.M. Hoff, 1984, The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere, Atmos. Environ., 18:2711–2722.

    Article  CAS  Google Scholar 

  • Barrie, L.A., D. Fisher and R.M. Koerner, 1985, Twentieth century trends in Arctic air pollution revealed by conductivity and acidity observations in snow and ice in the Canadian high Arctic, Atmos. Environ., 19:2055–2063.

    Article  CAS  Google Scholar 

  • Barrie, L.A., J.W. Bottenheim, R.C. Schnell, PJ. Crutzen and R.A. Rasmussen, 1988, Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334:138–141.

    Article  CAS  Google Scholar 

  • Barrie, L.A., M.P. Olson and K.K. Oikawa, 1989, The flux of anthropogenic sulphur into the Arctic from midlatitudes, Atmos. Environ., 23:2502–2512.

    Google Scholar 

  • Barrie, L.A. and J.W. Bottenheim, 1991, Sulphur and nitrogen pollution in the Arctic atmosphere, in: “Pollution of the Arctic Atmosphere,” W. Sturges (ed.), Elsevier Press, 334 pp.

    Google Scholar 

  • Barrie, L.A., R. Staebler, D. Toom, B. Georgi, G. Den Hartog, S. Landsberger and D. Wu, 1993, Arctic aerosol size-segregated chemical observations in relation to ozone depletion during Polar Sunrise Experiment 1992, J. Geophys. Res., submitted.

    Google Scholar 

  • Barrie, L.A. and J.W. Bottenheim, 1993, Polar Sunrise Experiment 1992, J. Geophys. Res., in press.

    Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, J.M. Barnola, T. Desperts, B Stauffer, D. Raynaud, 1993, Atmospheric methane, record from a Greenland ice core over the last 1,000 years, Geophys. Res. Lett., 20:2219–2222.

    Article  CAS  Google Scholar 

  • Bottenheim, J.W., L.A. Barrie and E. Atlas, 1993, The partitioning of nitrogen oxides in the lower Arctic troposphere during spring 1988, J. Atmos. Chem., 17:15–28.

    Article  CAS  Google Scholar 

  • Boutron, C., U. Görlach, J.P. Candelone, M.A. Bolshov and R.J. Delmas, 1991, Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s, Nature, 353:153–156.

    Article  CAS  Google Scholar 

  • Davidson, C.I. and R.C. Schnell, 1993, Introduction to the special issue Atmospheric Environment: Arctic air, snow and ice chemistry, Atmos. Environ., in press.

    Google Scholar 

  • De Angelis, M., M. Legrand, and J.L. Steffensen, 1994, First investigation of post-depositional effects in polar snow, in: “Ice Core Studies of Global Biogeochemical Cycles,” R.J. Delmas (ed.), NATO Advanced Studies Workshop, Annecy, France, April 1993.

    Google Scholar 

  • Delmas, R.J., S. Kirchener, J.M. Palais and J.-R. Petit, 1992,1000 years of explosive volcanism recorded at the South Pole, Tellus, 44:335–350.

    Article  Google Scholar 

  • Hopper, J.F., H.B. Ross, W.T. Sturges and L.A. Barrie, 1991, regional source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead, Tellus, 43:45–60.

    Article  Google Scholar 

  • Jacob, P. and D. Klockow, 1993, Measurements of hydrogen peroxide in Antarctic ambient air, snow and firn cores, Fresenius J. Anal. Chem., 346:429–434.

    Article  CAS  Google Scholar 

  • Jobson, B.T., H. Niki, Y. Yokouchi, J. Bottenheim, F. Hopper and R. Leaitch, 1993, Measurements of C2-C6 hydrocarbons during Polar Sunrise Experiment 1992, J. Geophys. Res., submitted.

    Google Scholar 

  • Koerner, R.M., 1993, Unpublished observations from on ice of 1989 to 1992 on Agassiz, Dept. Energy Mines and Resources, Ottawa, Canada.

    Google Scholar 

  • Legrand, M. and C. Saigne, 1988, Formate, acetate and methansulfonate measurements in Antarctic ice: Some geochemical implications, Atmos. Envir., 22:1011–1017.

    Article  CAS  Google Scholar 

  • Legrand, M. and S. Kichner, 1990, Origins and variations of nitrate in South Polar snow layers, J. Geophys. Res., 95:3493–3507.

    Article  Google Scholar 

  • Legrand, M. and C. Feniet-Saigne, 1991, Strong El Nino revealed by methanesulphonic acid in South Polar snow layers, Geophys. Res. Lett., 18:187–190.

    Article  Google Scholar 

  • Legrand, M., M. De Angelis, T. Staffelbach, A. Neftel, and B. Stauffer, 1992, Large perturbations of ammonium and organic acids content in the Summit-Greenland ice core: Fingerprint from forest fires?, Geophys. Res. Lett., 19:473–476.

    Article  CAS  Google Scholar 

  • Li, S.M. and L.A. Barrie, 1993, Biogenic sulphur aerosols in the arctic troposphere I: Contribution to total sulphate, J. Geophys. Res., 98:20, 613–620,622.

    Google Scholar 

  • Li, S.M., and J.W. Winchester, 1989, Geochemistry of organic and inorganic ions of late winter Arctic aerosols, Atmos. Environ., 23:2401–2415.

    Article  CAS  Google Scholar 

  • Li, S.-M., R.W. Talbot, L.A. Barrie, R.C. Harriss, C.I. Davidson, and J.-L. Jaffrezo, 1993, Seasonal and geographic variations of methanesulfonic acid in the Arctic troposphere, Atmos. Environ., in press.

    Google Scholar 

  • Li, S-M., L.A. Barrie, and A. Sirois, 1993, Biogenic sulfur aerosols in the Arctic troposphere: II. Trends and seasonal variations, J. Geophys. Res., 98:20,623–620,632.

    Google Scholar 

  • Mayewski, P.A., W.B. Lyons, M.J. Spencer, M.C. Twickler, C.F. Buck, and S. Whitlow, 1990, An ice-core record of atmospheric sulphate and nitrate, Nature, 346:554–556.

    Article  CAS  Google Scholar 

  • Mayewski, P.A. and M.R. Legrand, 1990, Recent increase in nitrate concentration of Antarctic snow, Nature, 346:258–260.

    Article  CAS  Google Scholar 

  • Mulvaney, R., E.C. Pasteur, D.A. Peel, E.S. Saltzmann and P.-Y. Whung, 1992, The ratio of MSA to non-sea salt sulphate in Antarctic Peninsula ice cores, Tellus, 44:295–303.

    Article  Google Scholar 

  • Mulvaney, R., G.F.J. Coulson and H.F.J. Corr, 1993, The fractionation of sea salt and acids during transport across the Antarctic ice shelf, Tellus, 45:179–187.

    Article  Google Scholar 

  • Mulvaney, R. and E.W. Wolff, 1993, Evidence for winter/spring denitrification of the stratosphere in the nitrate record of Antarctic firn cores, J. Geophys. Res., 98:5213–5220.

    Article  CAS  Google Scholar 

  • Nakazawa, T., T. Machida, M. Tanaka, Y. Fijii, S. Aoki and O. Watanabe, 1993, Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era, Geophys. Res. Lett., 20:943–946.

    Article  CAS  Google Scholar 

  • Neftel, A, 1991, “Use of snow and firn analysis to reconstruct past atmospheric composition,” NATO ASI Series, Vol. G28, Seasonal Snowpacks, T. Davies et al. (eds.), pgs. 385-416.

    Google Scholar 

  • Neubauer, J. and K.G. Heumann, 1988a, Determination of nitrate at the ng/g level in Antarctic snow samples with ion chromatography and isotope dilution mass spectrometry, Fresenius J. Anal. Chem., 331:170–173.

    Article  CAS  Google Scholar 

  • Neubauer, J. and K.G. Heumann, 1988b, Nitrate trace determinations in snow and firn core samples of ice shelves at the Weddell Sea, Antarctica, Atmos. Envir., 22:537–545.

    Article  CAS  Google Scholar 

  • Nriagu, J.O., R.D. Coker, and L.A. Barrie, 1991, Origin of sulphur in Canadian Arctic haze from isotope measurements, Nature, 349:142–145.

    Article  CAS  Google Scholar 

  • Ottar, B., 1989, Arctic air pollution: a Norwegian perspective, Atmos. Envir., 23:2349–2356.

    Article  CAS  Google Scholar 

  • Raynaud, D. and J. Chappellaz, 1993, The ice record of methane, in: “The Global Cycle of Atmospheric Methane,” NATO Advanced Studies Workshop, Oregon, Oct. 1991.

    Google Scholar 

  • Raynaud, D., J. Jouzel, J.M. Barnola, J. Chappellaz, RJ. Delmas and C. Lorius, 1993, The ice record of greenhouse gases, Science, 259:926–934.

    CAS  Google Scholar 

  • Rosman, K.J.R., W. Chisholm, C.F. Boutron, J.P. Candelone and U. Görlach, 1993, Isotopic evidence for the source of lead in Greenland snows since the late 1960s, Nature, 362:333–335.

    Article  CAS  Google Scholar 

  • Savoie, D.L., J.M. Prospero, R.J. Larsen, H. Fen, M. Izaguirre, H. Tao and T. Snowdon, 1992, Nitrogen and sulphur species in Antarctic aerosols at Mawson, Palmer Station and Marsh (King George Island), J. Atmos. Chem., 17:95–122.

    Article  Google Scholar 

  • Sigg, A. and A. Neftel, 1991, Evidence for a 50% increase of H2O2 over the past 200 years from a Greenland ice core, Nature, 351:557–559.

    Article  CAS  Google Scholar 

  • Silvente, E., 1993, “Contribution Ă  l’étude de la fonction de transfert air neige en rĂ©gions polaires,” Thesis, Univ. of Grenoble, 157 pp.

    Google Scholar 

  • Silvente, E. and M. Legrand, 1993, Ammonium to sulphate ratio in aerosol and snow of Greenland and Antarctic regions, Geophys. Res. Lett., 20:687–690.

    Article  CAS  Google Scholar 

  • Staffelbach, T., A. Neftel, B. Stauffer, and D. Jacob, 1991, Formaldehyde in polar ice cores; a possibility to characterize the atmospheric sink of methane in the past, Nature, 349:603–605.

    Article  CAS  Google Scholar 

  • Sturges, W.T. and L.A. Barrie, 1989, Stable lead isotope ratios in Arctic aerosols: evidence for the origin of Arctic air pollution, Atmos. Envir., 23:2513–2520.

    Article  CAS  Google Scholar 

  • Sturges, W.T., J.F. Hopper, L.A. Barrie and R.C. Schnell, 1993, Stable lead isotopes in Alaskan Arctic aerosols, Atmos. Envir., in press.

    Google Scholar 

  • Talbot, R.W., A.S. Vijgen, and R.C. Harriss, 1992, Soluble species in Arctic summer troposphere: Acidic gases, aerosols and precipitation, J. Geophys. Res. 97:16,531–516,543.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barrie, L.A., Delmas, R.J. (1994). Polar Atmosphere and Snow Chemistry. In: Prinn, R.G. (eds) Global Atmospheric-Biospheric Chemistry. Environmental Science Research, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2524-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2524-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6075-9

  • Online ISBN: 978-1-4615-2524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics