Skip to main content

Trace Gas Emissions from Rice Fields

  • Chapter
Book cover Global Atmospheric-Biospheric Chemistry

Part of the book series: Environmental Science Research ((ESRH,volume 48))

Abstract

Wetland rice cultivation is considered to be one of the larger sources of atmospheric methane, a gas which is an important potential driver of global warming. The atmospheric methane concentration is increasing at about 1% per year and it is an unanswered question as to how much of this increase is due to increased emissions from wetland ricefields. Objectives in current research are to reduce uncertainties concerning how much methane and other climatically active trace gases are annually emitted from irrigated, rainfed, and flood prone rice ecosystems at present, to predict future emissions for given management scenarios, and to develop feasible rice technologies that will reduce emissions and yet will meet the required increase in rice production.

Recent global estimates of methane emission from ricefields range from 20 to 100 Tg/yr corresponding to 6 to 30% of total anthropogenic methane emission. A part of the methane emitted from naturally flooded ricefields may not be considered anthropogenic. Because of the limited number and locations of comprehensive seasonal flux measurements, global extrapolations of emission rates from ricefields are still highly uncertain and tentative. They do not account for varying floodwater regimes, soil properties, organic amendments, cultural practices, and rice cultivars. Irrigated ricefields seem to be the major potential source for increased methane emission. Methane emissions are lower and highly variable in rainfed rice because of periodic droughts during the growing season. Flood prone rice may also emit less methane because of deep flooding or tidal influence. Upland rice is not a source of methane because it is grown like wheat on aerobic soils.

Flooding a ricefield cuts off the oxygen supply from the atmosphere causing an anaerobic fermentation of organic matter in the soil. Methane is a major end product of this process. Zero to over 90% of the methane produced may be oxidized in the soil depending on flood condition and time of growing season. Methane is released to the atmosphere by diffusion, ebullition, and through rice plants. A well developed vascular system, common to wetland plants, provides an effective vent to supply atmospheric oxygen to the rice roots for respiration and to release methane from the soil. Methane fluxes are influenced by: temperature; water regime; low molecular carbon supply from decomposing soil organic residues and root exudates; soil physical, chemical and biological properties; plant physiology; rice cultivars; and cultural practices. Methane emissions from ricefields show distinct diurnal and seasonal variations. Diurnal variation strongly correlates with soil temperature while seasonal variation seems to be more influenced by plant development.

The world’s annual rice production must increase by 65% in the next 30 years to feed the expected population. With present agronomic practices, such increased production will lead to further increases in methane emission. Promising mitigation candidates that are in accord with increased production are: shortening of flooding periods through direct seeding and multiple-drainage aeration, minimizing application of easily decomposable organic matter, use of sulfate-containing fertilizer, application of chemicals that inhibit nitrification and methane formation at the same time, breeding of rice cultivars with a lower methane emission potential, and cultural practices that cause less soil disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abram, J.W. and D.B. Nedwell, 1978, Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen, Arch. Microbiol, 117:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Acharya, C.N., 1935, Studies on the anaerobic decomposition of plant materials. II. Some factors influencing the anaerobic decomposition, Biochem. J., 29:953–960.

    PubMed  CAS  Google Scholar 

  • Alperin, M.J. and W.S. Reeburgh, 1984, Geochemical observations supporting anaerobic methane oxidation, in: “Microbial growth on C-l compounds,” R.L. Crawford and R.S. Hanson (eds.), American Society of Microbiology, Washington, D.C.

    Google Scholar 

  • Anthony, C., 1982, “The Biochemistry of Methylotrophs,” Academic, San Diego California.

    Google Scholar 

  • Aselmann, I. and P.J. Crutzen, 1990, Global inventory of wetland distribution and seasonality of net primary production and estimated methane emission, in: “Soils and the Greenhouse Effect,” A.F. Bouwman (ed.), John Wiley & Sons, Chichester England.

    Google Scholar 

  • Bachelet, D. and H.U. Neue, 1993, Methane emission from wetland rice areas of Asia, Chemosphere, 26:219–238.

    Article  CAS  Google Scholar 

  • Balderston, W.L. and W.J. Payne, 1976, Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides, Appl. Environ. Microbiol., 32:264–269.

    PubMed  CAS  Google Scholar 

  • Blotevogel, K.H., U. Fischer, M. Mocha and S. Jansen, 1985, Methanobacterium thermoalcapiphilum sp. nov. A new moderately alkaliphilic and thermophilic autotrophic methanogen, Arch. Microbiol., 142:211–217.

    Article  CAS  Google Scholar 

  • Bonneau, M., 1982, Soil temperature, in: “Constituents and properties of soils,” M. Bonneau and B. Souchier (eds.), Academic Press, London, pgs. 366–371.

    Google Scholar 

  • Bont, J.A.M. de, K.K. Lee and D.F. Bouldin, 1978, Bacterial oxidation of methane in rice paddy, Ecol. Bull., 26:91–96.

    Google Scholar 

  • Boone, D.R., 1993, Formation and consumption of atmospheric methane, in: “Global Atmospheric Methane,” M.A.K. Khalil and M. Shearer (eds.), NATO ASI/ARW series, in press

    Google Scholar 

  • Bouwman, A.F., 1990, Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere, in: “Soils and the Greenhouse Effect,” A.F. Bouwman (ed.), John Wiley, New York, pgs. 61–127.

    Google Scholar 

  • Bronson, K.F. and A.R. Mosier, 1991, Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane and carbon dioxide emissions in flooded rice, Biology and Fertility of Soils, 3:116–120.

    Article  Google Scholar 

  • Butterbach-Bahl, K., 1992, “Mechanismen der Produktion und Emission von Methan in Reisfeldern: Abhängigkeit von Felddüngung und angebauter Varietät,” Diss. Techn. Univ. München. Schriftenreihe des Fraunhofer Instituts für Atmospherische Umweltforschung Bd. 14. Wiss. Verl. Mauraun, Frankfurt/M.

    Google Scholar 

  • Capistrano, R.F., 1988, “Decomposition of 14C-labeled rice straw in three submerged soils under controlled laboratory conditions,” MS thesis, University of the Philippines at Los Baños Laguna, Philippines.

    Google Scholar 

  • Cicerone, R.J. and J.D. Shetter, 1981, Sources of chemospheric methane: Measurements in rice paddies and a discussion, J. Geophys. Res., 86:7203–7209.

    Article  CAS  Google Scholar 

  • Cicerone, R.J. and R.S. Oremland, 1988, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2:299–327.

    Article  CAS  Google Scholar 

  • Cicerone, R.J., C.C. Delwiche, S.C. Tyler and P.R. Zimmermann, 1992, Methane emissions from California rice paddies with varied treatments, Global Biogeochem Cycles, 6:233–248.

    Article  CAS  Google Scholar 

  • Conrad, R., 1989, Control of methane production in terrestrial ecosystems, in: “Exchange of trace gases between terrestrial ecosystems and the atmosphere,” M.O. Andrae and D.S. Schimel (eds.), S. Bernhard Dahlem Konferenzen,Wiley, New York, pgs. 39–58.

    Google Scholar 

  • Conrad, R., H.P. Mayer and M. Wnst, 1989, Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial association in anoxic paddy soil, FEMS Microbiol. Ecol., 62:265–274.

    Article  CAS  Google Scholar 

  • Conrad, R. and F. Rothfuss, 1991, Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium, Biol. Fert. Soils, 12:28–32.

    Article  CAS  Google Scholar 

  • Crawford, R.L. and R.S. Hanson (eds.), 1984, “Microbial growth on C1 compounds,” Proceedings of the 4th International Symposium American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Crill, P.M., K.B. Bartlett, R.C. Harriss, E. Gorham, E.S. Verry, D.I. Sebacher, L. Madzar and W. Sanner, 1988, Methane flux from Minnesota peatlands, Global Biogechem. Cycles, 2:371–384.

    Article  CAS  Google Scholar 

  • Daniels, L., R. Sparling, and G.D. Sprott, 1984, The bioenergetics of methanogenesis, Biochim. Biophys. Acta., 768:113–163.

    Article  PubMed  CAS  Google Scholar 

  • De Datta, S.K., 1981, “Principles and Practices of Rice Production,” John Wiley and Sons, New York.

    Google Scholar 

  • De Datta, S.K., 1987, Advances in soil fertility research and nitrogen fertilizer management for lowland rice, in: “Efficiency of Nitrogen Fertilizer for Rice,” International Rice Research Institute, P.O. Box 933 Manila, Philippines, pgs. 27–41.

    Google Scholar 

  • De Datta, S.K. and W.H. Patrick (eds.), 1986, “Nitrogen Economy of Flooded Rice Soils: Development in Plant and Soil Sciences,” Martin Nijhoff Publication, Dodrecht, The Netherlands.

    Google Scholar 

  • De Laune, R.D., E.J. Smith and W.H. Patrick, 1983, Methane release from Gulf Coast wetlands, Tellus, 35B:8–15.

    Article  Google Scholar 

  • Denier van der Gon, H.A.C., H.U. Neue, R.S. Lantin, R. Wassmann, M.C.R. Alberto, J.B. Aduna and M.J.P. Tan, 1992, Controlling factors of methane emission from rice fields, in: “World Inventory of Soil Emission Potentials,” N.H. Batjes and E.M. Bridges (eds.), WISE Report 2, ISRIC, Wageningen, The Netherlands, pgs. 81–92.

    Google Scholar 

  • Dent, D., 1986, “Acid sulfate soils: a baseline for research and development,” ILRI Publication 39, Wageningen, The Netherlands.

    Google Scholar 

  • Dickinson, R.E. and R.J. Cicerone, 1986, Future global warming from atmospheric trace gases, Nature, 319:109–115.

    Article  CAS  Google Scholar 

  • FAO, 1988, United Nations Food and Agriculture Organization Report, Rome.

    Google Scholar 

  • Fillery, I.R.P. and P.L.G. Vlek, 1986, Reappraisal of the significance of ammonia volatilization as a N loss mechanism in flooded rice fields, in: “Development in Plant and Soil Sciences,” S.K. De Datta and W.H. Patrick (eds.), Martin Nijhoff Publ., Dodrecht, The Netherlands, pgs. 79–98.

    Google Scholar 

  • Freney, J.R., V.A. Jacq and J.F. Baldensperger, 1982, The significance of the biological sulfur cycle in rice production, Dev. Plant Soil Sci., 5:271–317.

    CAS  Google Scholar 

  • Frenzel, P., F. Rothfuss and R. Conrad, 1992, Oxygen profiles and methane turnover in a flooded microcosm, Biol. Fertil. Soils, 14:84–89

    Article  CAS  Google Scholar 

  • Garcia, J.L., 1990, Taxonomy and ecology of methanogens, FEMS Microbiol. Rev., 87:297–308.

    Article  Google Scholar 

  • Garcia, J.L., M. Raimbault, V. Jacq, G. Rinaudo and P. Roger, 1974, Activities microbiennes dans les sols de rizieres du Senegal: relations avec les proprietes physicochimiques et influence de la rhizosphere, Rev. Ecol. Biol., 11:169–185.

    CAS  Google Scholar 

  • Hackman, C.W., 1979, Rice field ecology in Northeastern Thailand: The effect of wet and dry season on a cultivated aquatic ecosystem, Monogr. Biol., 34, J. lilies (ed.), W. Junk Publisher.

    Google Scholar 

  • Hanson, R.S., 1980, Ecology and diversity of methylotrophic organisms, Adv. Appl. Microbiology, 26:3–39.

    Article  CAS  Google Scholar 

  • Higgins, I.J., D.J. Best, R.C. Hammond and D.C. Scott, 1981, Methane-oxidizing microorganisms, Microbiol. Rev., 45:556–590.

    PubMed  CAS  Google Scholar 

  • Holzapfel-Pschorn, A., R. Conrad and W. Seiler, 1986, Effects of vegetation on the emission of methane from submerged paddy soil, Plant and Soil, 92:223–233.

    Article  CAS  Google Scholar 

  • Holzapfel-Pschorn, A., R. Conrad and W. Seiler, 1985, Production oxidation and emission of methane in rice paddies, FEMS Microbiol. Ecol., 31:343–351.

    Article  CAS  Google Scholar 

  • Holzapfel-Pschorn, A. and W. Seiler, 1986, Methane emission during a cultivation period from an Italian rice paddy, J. Geophys. Res., 91:11,803–811,814.

    Article  Google Scholar 

  • Inubushi, K., Y. Muramatsu and M. Umebayashi, 1992, Influence of percolation on methane emission from flooded paddy soil, Jpn. J. Soil Sci. Plant Nutr., 63:184–189

    CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 1992, “Climate Change: The supplementary report to the IPCC scientific assessment,” J.T. Houghton, B.A. Callender and S.K.Varney (eds.), Cambridge University Press, UK.

    Google Scholar 

  • IRRI: International Rice Research Institute, 1964, “Annual report for 1963,” P.O. Box 933, Manila, Philippines.

    Google Scholar 

  • IRRI: International Rice Research Institute, 1989, “IRRI Toward 2000 and Beyond,” P. O. Box 933, Manila, Philippines.

    Google Scholar 

  • IRRI: International Rice Research Institute, 1991, “World Rice Statistics 1990,” P. O. Box 933, Manila, Philippines.

    Google Scholar 

  • IRRI: International Rice Research Institute, 1992, “Wet Season & Dry Season Reports,” P. O. Box 933, Manila, Philippines.

    Google Scholar 

  • Iversen, N., R.S. Oremland and M.J. Klug, 1987, Big Soda Lake (Nevada) 3 pelagic methanogenesis and anaerobic METHANE oxidation, Limnol. Oceanogr., 32:804–814.

    Article  CAS  Google Scholar 

  • Kanda, K., H. Tsuruta and K. Minami, 1992, Emission of dimethyl sulfide, carbonyl sulfide, and carbon disulfide from paddy fields, Plant Nutr., 38(4):709–716.

    Article  CAS  Google Scholar 

  • Kawaguchi, K. and K. Kyuma, 1977, “Paddy Soils in Tropical Asia: Their Material Nature and Fertility,” The University Press of Hawaii Honolulu Hawaii, U.S.

    Google Scholar 

  • Khalil, M.A.K. and R.A. Rasmussen, 1987, Atmospheric methane: trends over the last 10000 years, Atmos. Environ., 21: 2445–2452.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K. and R.A. Rasmussen, 1989, Climate induced feedback for the global cycles of methane and nitrous oxide, Tellus, 41B:554–559.

    Article  CAS  Google Scholar 

  • Khalil M.A.K. and R.A. Rasmussen, 1990, Constraints on the global sources of methane and an analyses of recent budgets, Tellus, 42B:229–236.

    CAS  Google Scholar 

  • Kiene, R.P. and P.T. Visscher, 1987, Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic marine sediments, Appl. Environ. Microbiol., 53:2426–2434.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1992, Methane emission from paddy soils in Japan and Thailand, in: “World inventory of soil emission potentials,” N.H. Batjes and E.M. Bridges (eds.), WISE Report 2, ISRIC, Wageningen, pgs. 43–79.

    Google Scholar 

  • Knowles, R., 1993, Methane: Processes of production and consumption, in: “Agricultural Ecosystem Effects on Trace Gases and Global Climate Change,” ASA Special Publication No. 55, pgs. 145-156.

    Google Scholar 

  • Kristjansson, J.K., P. Schonheit and R.K. Thauer, 1982, Different Ks values for hydrogen and methanogenic and sulfate-reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate, Arch. Microbiol., 131:278–282.

    Article  CAS  Google Scholar 

  • Koyama, T., 1963, Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen, J. Geophys. Res., 68:3971–3973.

    CAS  Google Scholar 

  • Krumböck, M. and R. Conrad, 1991, Metabolism of position-labeled glucose in anoxic methanogenic paddy soil and lake sediment, FEMS Microbiol. Ecol., 85:247–256.

    Article  Google Scholar 

  • Kundu, D.K., 1987, “Chemical kinetics of aerobic soils and rice growth,” PhD thesis, Indian Agricultural Research Institute, New Delhi, India.

    Google Scholar 

  • Lindau, C.W., P.K. Bollich, R.D. DeLaune, W.H. Patrick Jr. and V.J. Law, 1991, Effect of urea fertilizer and environmental factors on methane emissions from a Louisiana rice field, Plant and Soil, 136:195–203.

    Article  CAS  Google Scholar 

  • Lindau, C.W., P.K. Bollich, R.D. Delaune, A.R. Moisier and K.F. Bronson, 1993, Methane mitigation in flooded Louisiana rice fields, Biol. Fert. Soils, 15:174–178.

    Article  CAS  Google Scholar 

  • Lovley, D.R. and M.J. Klug, 1983, Methanogenesis from methanol and from hydrogen and carbon dioxide in the sediments of a eutrophic lake, Appl. Environ. Microbiol, 45:1310–1315.

    PubMed  CAS  Google Scholar 

  • Maesschalck, G., H. Verplancke and M. De Boodt, 1985, Water use and wateruse efficiency under different management systems for upland crops, in: “Soil Physics and Rice,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 397–408.

    Google Scholar 

  • Manning, M.R., D.C. Lowe, W. Melhuish, R. Spaarks, G. Wallace, C.A.M. Brenninkmeijer and R.C. McGill, 1990, The use of radiocarbons measurements in atmospheric studies, Radiocarbons, 32:37–58.

    Google Scholar 

  • Mariko, S., Y. Harazono, N. Owa and I. Nouchi, 1991, Methane in flooded soil, water and the emission through rice plants to the atmosphere, Environm. Experim. Botany, 31:343–350.

    Article  Google Scholar 

  • Martin, U., H.U. Neue, H.W. Scharpenseel and P.M. Becker, 1983, Anaerobe Zersetzung von Reisstroh in einem gefluteten Reisboden auf den Philippinen, Mitt. Dtsch. Bodenkdl. Gesellsch., 38:245–250.

    Google Scholar 

  • Mathrani, I.M., D.R. Boone, R.A. Man, G.E. Fox and P.P. Lau, 1988, Methanohalophilus zhilinae sp.nov. an alkaliphilic halophilic methylotrophic methanogen, Inst. J. Sys. Bacteriol., 38:139–142.

    Article  CAS  Google Scholar 

  • McBride, B.Cand R.S. Wolfe, 1971, Inhibition of methanogenesis by DDT, Nature, 234:551–552.

    Article  PubMed  CAS  Google Scholar 

  • Minami, K. and H.U. Neue, 1993, Rice paddies as methane source, Cimate Change, in press.

    Google Scholar 

  • Neue, H.U., 1985, Organic matter dynamics in wetland soils, in: “Wetland Soils: Characterization Classification and Utilization,” International Rice Research Institute, P.O. Box 933 Manila Philippines, pgs. 109–122.

    Google Scholar 

  • Neue, H.U., 1989, Rice growing soils: constraints utilization and research needs, in: “Classification and Management of Rice Growing Soils,” FFFTC Book Series No. 39, Food and Fertilizer Technology Center for the ASPAC Region Taiwan R.O.C., pgs. 1-14

    Google Scholar 

  • Neue, H.U., 1991, Holistic view of chemistry of flooded soil, in: “,” International Board for Soil Research and Management, IBSRAM Monograph No. 2, Bangkok, pgs. 5-32.

    Google Scholar 

  • Neue, H.U., 1992, Agronomic practices affecting methane fluxes from rice cultivation, Ecol. Bull, 42:174–182.

    CAS  Google Scholar 

  • Neue, H.U. and H.W. Scharpenseel, 1984, Gaseous products of the decomposition of organic matter in submerged soils, in: “Organic Matter and Rice,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 311–328.

    Google Scholar 

  • Neue, H.U. and H.W. Scharpenseel, 1987, Decomposition pattern of 14C-labeled rice straw in aerobic and submerged rice soils of the Philippines, Science Total Environ., 62:431–434.

    Article  CAS  Google Scholar 

  • Neue, H.U. and P.R. Bloom, 1989, Nutrient kinetics and availability in flooded soils, in: “Progress in Irrigated Rice Research,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 173–190.

    Google Scholar 

  • Neue, H.U., P. Becker-Heidmann and H.W. Scharpenseel, 1990, Organic matter dynamics soil properties and cultural practices in ricelands and their relationship to methane production, in: “Soils and the Greenhouse Effect,” A.F. Bouwman (ed.), John Wiley & Sons, Chichester, England, pgs. 457–466.

    Google Scholar 

  • Neue, H.U. and P.A. Roger, 1993, Rice agriculture: factors controlling emission, in: “Global Atmospheric Methane,” M.A.K. Khalil and M. Shearer (eds.), NATO ASI/ARW series, in press.

    Google Scholar 

  • Neue, H.U., R.S. Lantin, R. Wassmann, J.B. Aduna, M.C.R. Alberto and MJ.F. Andales, 1993, Methane emission from rice soils of the Philippines, in: “Methane and Nitrous Oxide Emission from Natural and Anthropogenic Sources,” NIAES, Japan, in press.

    Google Scholar 

  • Oremland, R.S., 1988, The biogeochemistry of methanogenic bacteria, in: “Biology of anaerobic microorganism,” A.J.B. Zehnder (ed.), J. Wiley, New York, pgs. 641–702.

    Google Scholar 

  • Oremland, R.S. and D.G. Capone, 1988, Use of specific inhibitors in biogeochemistry and microbial ecology, Adv. Microbiol. Ecol., 10:285–383.

    Article  CAS  Google Scholar 

  • Oremland, R.S., L.M. Marsh and S. Polcin, 1982, Methane production and simultaneous sulfate reduction in anoxic salt marsh sediments, Nature, 296:143–145.

    Article  CAS  Google Scholar 

  • Oremland, R.S. and S. Polcin, 1982, Methanogenesis and sulfate-reduction: competitive and noncompetitive substrate in estuarine sediments, Appl. Environ. Microbiol, 44:1270–1276.

    PubMed  CAS  Google Scholar 

  • Panganiban, A.T., T.E. Patt, W. Hart and R.S. Hanson, 1979, Oxidation of methane in the absence of oxygen in lake water samples, Appl Environ. Microbiol., 37:303–309.

    PubMed  CAS  Google Scholar 

  • Parashar, D., C.J. Rai, P.K. Gupta and N. Singh, 1990, Parameters affecting methane emission from paddy fields, Indian J. Radio Space Physics, 20:12–17.

    Google Scholar 

  • Patel, G.B. and L.A. Roth, 1977, Effect of sodium chloride on growth and methane production of methanogens, Can. J. Microbiol, 6:893.

    Article  Google Scholar 

  • Patra, P.K., 1987, “Influence of water regime on the chemical kinetics of soils and rice growth,” PhD thesis, Indian Agricultural Research Institute, New Delhi, India.

    Google Scholar 

  • Patrick, W.H., Jr, D.S. Mikkelsen and B.R. Wells, 1985, Plant nutrient behavior in flooded soil, in: “Fertilizer Technology and Use,” Soil Science Society of America, Madison, Wisconsin, 3rd edition.

    Google Scholar 

  • Patrick, W.H., Jr. and C.N. Reddy, 1978, Chemical changes in rice soils, in: “Soils and Rice,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 361–380.

    Google Scholar 

  • Ponnamperuma, F.N., 1972, The chemistry of submerged soils, Adv. Agron., 24:29–96.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F.N., 1981, Some aspects of the physical chemistry of paddy soils, in: “Proceedings of the Symposium on Paddy Soils,” Science Press, Beijing People’s Republic of China, pgs. 59–94.

    Chapter  Google Scholar 

  • Ponnamperuma, F.N., 1984a, Effects of flooding on soils, in: “Flooding and Plant Growth,” T.T. Kozlowski (ed.), Academic Press, New York, pgs. 9–45.

    Google Scholar 

  • Ponnamperuma, F.N., 1984b, Straw as a source of nutrients for wetland rice, in: “Organic Matter and Rice,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 117–136.

    Google Scholar 

  • Ponnamperuma, F.N., 1985, Chemical kinetics of wetland rice soils relative to soil fertility, in: “Wetland Soils: Characterization Classification and Utilization,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 71–89.

    Google Scholar 

  • Quay, P.D., S.L. King, J. Stutsman, D.O. Wilbur, L.P. Steele, I. Fung, R.H. Gammon, T.A. Brown, G.W. Farewell, P.M. Grootes and F.H. Schmidt, 1991, Carbon isotopic composition of atmospheric methane: Fossil and biomass burning strength, Global Biogeochem. Cycles, 5:25–47.

    Article  CAS  Google Scholar 

  • Raimbault, M., 1975, Étude de I’influence inhibitrice de l’acétylene sur la formation biologique du méthane dans un sol de riziére, Ann. Microbiol (Inst. Pasteur), 126a:217–258.

    Google Scholar 

  • Raimbault, M., G. Rinaudo, J.L. Garcia and M. Boureau, 1977, A device to study metabolic gases in the rice rhizosphere, Biol. Biochem., 9:193–196.

    Article  CAS  Google Scholar 

  • Rajagopal, B.S., N. Belay and L. Daniels, 1988, Isolation and characterization of methanogenic bacteria from rice paddies, FEMS Microbiol. Ecol., 53:153–158.

    Article  CAS  Google Scholar 

  • Reddy, K.R. and W.H. Patrick Jr., 1986, Denitrification losses in flooded rice fields, in: “Nitrogen Economy of Flooded Rice Soils: Development in Plant and Soil Sciences,” S.K. DeDatta and W.H. Patrick Jr. (eds.), M. Nijhoff Publ., pgs. 99-116.

    Google Scholar 

  • Roger, P.A., I.F. Grant, P.N. Reddy and I. Watanabe, 1987, The photosynthetic aquatic biomass in wetland rice fields and its effect on nitrogen dynamics, in: “Efficiency of N Fertilizers for Rice, International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 43–68.

    Google Scholar 

  • Salvas, P.L. and B.F. Taylor, 1980, Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (Nitrapin or N-serve), Curr. Microbiol., 4:305–306.

    Article  CAS  Google Scholar 

  • Sass, R.L., F.M. Fisher, P.A. Harcombe and F.T. Turner, 1990, Methane production and emission in a Texas rice field, Global Biogeochem. Cycles, 4:47–68.

    Article  CAS  Google Scholar 

  • Sass, R.L., F.M. Fisher, F.T. Turner and M.F. Jund, 1991a, Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation, Global Biogeochem. Cycles, 5:335–350.

    Article  CAS  Google Scholar 

  • Sass, R.L., F.M. Fisher, P.A. Harcombe and F.T. Turner, 1991b, Mitigation of methane emissions from rice fields: possible adverse effects of incorporated rice straw, Global Biogeochem. Cycles, 5:275–287.

    Article  Google Scholar 

  • Sass, R.L., F.M. Fisher, Y.B. Wang, F.T. Turner and M.F. Jund, 1992, Methane emission from rice fields: the effect of floodwater management, Global Biogeochem. Cycles, 6:249–262.

    Article  CAS  Google Scholar 

  • Schntz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg and W. Seiler, 1989, A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field, J. Geophys. Res., 94:16,405–16,416.

    Google Scholar 

  • Schntz, H., W. Seiler and R. Conrad, 1990, Influence of soil temperature on methane emission from rice paddy fields, Biogeochemistry, 11:77–95.

    Google Scholar 

  • Seiler, W., 1984, Contribution of biological processes to the global budget of methane in the atmosphere, in: “Current Perspectives in Microbial Ecology,” M. J. Kleig and C.A. Reddy (eds.), American Society of Microbiology, Washington DC, pgs. 468–477.

    Google Scholar 

  • Sextone, A.J. and C.N. Mains, 1990, Production of methane and ethylene in organic horizons of spruce forest soils, Soil Biol. Biochem., 22:135–139.

    Article  Google Scholar 

  • Strayer, R.F. and J.M. Tiedje, 1978, Kinetic parameters of the conversion of methane precursors to methane in hypereutrophic lake sediment, Appl. Environ. Microbiol., 36:330–340.

    PubMed  CAS  Google Scholar 

  • Svensson, B.H., 1984, Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen, Appl. Environ.Microbiol., 48:389–394.

    PubMed  CAS  Google Scholar 

  • Takai, Y., 1970, The mechanism of methane fermentation in flooded soils, Soil Sci. Plant Nutr., 16:238–239.

    Article  CAS  Google Scholar 

  • Takai, Y., T. Koyama and T. Kamura, 1956, Microbial metabolism in reduction process of paddy soil (Part I), Soil Plant Food, 2:63–66.

    Article  CAS  Google Scholar 

  • Tsutsuki, K. and F.N. Ponnamperuma, 1987, Behavior of anaerobic decomposition products in submerged soils: Effects of organic material amendment soil properties and temperature, Soil Sci. Plant Nutr., 33:13–33.

    Article  CAS  Google Scholar 

  • US-EPA (United States Environmental Protection Agency), 1990, “Greenhouse gas emissions from agriculture,” Vol.1, Office of Policy Analysis, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Vermoesen, A., H. Ramon and O. van Cleemput, 1991, Composition of the soil gas phase: Permanent gases and hydrocarbons, Pedology, 41:119–132.

    CAS  Google Scholar 

  • Vogels, G.D., J.T. Keltjens and C. Van der Drift, 1988, Biochemistry of methane production, in: “Biology of Anaerobic Microorganisms,” A.J.B. Zehnder (ed.), Wiley, New York, pgs. 707–770.

    Google Scholar 

  • Wagatsuma, T., T. Nakashima, K. Tawaraya, S. Watanabe, A. Kamio and A. Ueki, 1990, Role of plant aerenchyma in wet tolerance and methane emission from plants, in: “Plant Nutrition — Plant Physiology and Application,” M.L. van Beusichem (ed), Kluwer Acad. Publ., pgs. 455-461.

    Google Scholar 

  • Wahlen, M., N. Takata, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks and W. Broecker, 1989, Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon, Science, 245:286–290.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z.P., C.W. Lindau, R.D. Delaune and W.H. Patrick Jr., 1992, Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers, Fertilizer Research, 33:115–121.

    Article  CAS  Google Scholar 

  • Wang, Z.P., R.D. Delaune, P.H. Masscheleyn and W.H. Patrick Jr., 1993a, Soil redox and pH effects on methane production in a flooded rice soil, Soil Sci. Soc. Am. J., 57:382–385

    Article  CAS  Google Scholar 

  • Wang, Z.P., C.W. Lindau, R.D. Delaune and W.H. Patrick Jr., 1993b, Methane emission and entrapment in flooded soils as affected by soil properties, Biology and Fertility of Soils, in press.

    Google Scholar 

  • Wang, M.X., A. Dai, RX. Shen, H.B. Wu, H. Schntz, H. Rennenberg and W. Seiler, 1990, Methane emission from a Chinese paddy field, Acta Meteorologica Sinica, 43:265–275.

    Google Scholar 

  • Wang, Z., 1986, Rice-based systems in subtropical China, in: “Wetlands and Rice in Subsaharan Africa,” A.S.R. Juo and J.A. Lowe (eds.), UTA Ibadan Nigeria, pgs. 195-206.

    Google Scholar 

  • Ward, D.M. M.R. Winfrey, 1985, Interactions between methanogenic and sulfate-reducing bacteria in sediments, Adv. Aquatic Microbiol., 3:141–179.

    Google Scholar 

  • Watanabe, I. and P.A. Roger, 1985, Ecology of flooded rice fields, in: “Wetland Soils: Characterization Classification and Utilization,” International Rice Research Institute, P.O. Box 933, Manila, Philippines, pgs. 229–246.

    Google Scholar 

  • Whittenbury, R., K.C. Phillips and J.K. Wilkinson, 1970a, Enrichment isolation and some properties of methane-utilizing bacteria, J. Gen. Microbiol., 61:205–218.

    Article  PubMed  CAS  Google Scholar 

  • Whittenbury, R., S.L. Davies, J.F. Davey, 1970b, Exospores and cysts formed by methane-utilizing bacteria, J. Gen. Microbiol., 61:219–226.

    Article  PubMed  CAS  Google Scholar 

  • Whitton, B.A. and J.A. Rother, 1988, Environmental features of deepwater rice fields in Bangladesh during the flood season, in: “1987 International Deepwater Rice Workshop,” International Rice Research Institute, P. O. Box 933, Manila, Philippines, pgs. 47–54.

    Google Scholar 

  • Winfrey, M.R., 1984, Microbial production of methane, in: “Petroleum Microbiology,” R.M. Atlas (ed.), Macmillan, N.Y., pgs. 153–219.

    Google Scholar 

  • Winfrey, M.R. and J.G. Zeikus, 1977, Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol., 33:275–281.

    PubMed  CAS  Google Scholar 

  • Worakit, S., D.R. Boone, R.A. Man, M.E. Abdel-Samie and M.M. El-Halwagi, 1986, Methanobacterium alcaliphilum sp. nov. an H2-utilizing methanogen that grows at high pH values, Int. J. Syst. Bacteriol., 36:380–382.

    Article  Google Scholar 

  • Yagi, K. and K. Minami, 1990, Effects of organic matter application on methane emission from some Japanese paddy fields, Soil Sci. Plant Nutr., 36:599–610.

    Article  CAS  Google Scholar 

  • Yoshida, S., 1981, “Fundamentals of Rice Crop Science, International Rice Research Institute,” P.O. Box 933, Manila, Philippines, 269 pp.

    Google Scholar 

  • Yu, T., 1985, “Physical Chemistry of Paddy Soils,” Springer-Verlag, Berlin.

    Google Scholar 

  • Zeikus, J.G., 1977, The biology of methanogenic bacteria, Bacteriol. Review, 41:514–541.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neue, HU., Sass, R.L. (1994). Trace Gas Emissions from Rice Fields. In: Prinn, R.G. (eds) Global Atmospheric-Biospheric Chemistry. Environmental Science Research, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2524-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2524-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6075-9

  • Online ISBN: 978-1-4615-2524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics