Skip to main content

Marine Aerosol and Gas Exchange and Global Atmospheric Effects

  • Chapter
Book cover Global Atmospheric-Biospheric Chemistry

Part of the book series: Environmental Science Research ((ESRH,volume 48))

Abstract

It is becoming clear that the global climate system is controlled by numerous links between the biosphere and the atmosphere. The objective of IGAC’s Marine Aerosol and Gas Exchange: Atmospheric Chemistry and Climate (MAGE) Activity is to quantify those links through interdisciplinary multinational research on air/sea exchange and its biological controls and impacts. We seek to bring together scientists from a variety of disciplines to study the interfaces between them. Wherever possible, we encourage collaborative work between marine scientists who look up at the interface from the water column and atmospheric chemists, whose work in the atmosphere has frequently treated the ocean’s surface as a featureless source or sink.

Several problems require this interdisciplinary approach. Marine biological productivity in some areas is controlled by the supply of nutrients from the atmosphere. In certain nitrogen-rich regions, for instance, the supply of iron from atmospheric aerosols may limit productivity. In other areas, the wet and dry deposition of atmospheric nitrate and ammonium may be a significant source of fixed nitrogen to biological communities. MAGE helped to organize an international group of scientists who studied the effect of atmospheric iron on biological productivity, phytoplankton speciation, and DMS production as a part of the Equatorial Pacific JGOFS (Joint Global Ocean Flux Study) experiment in the spring of 1992. A second MAGE/JGOFS cruise studied the fluxes of biogenic gases through the air/sea interface in the same region.

To quantitate the impact of marine biota on atmospheric aerosols, cloud properties, and climate, one must precisely measure (and then parameterize for use in models) the emission of trace gases from the ocean’s surface. MAGE is seeking to develop new strategies for measuring some of these elusive fluxes. During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992, MAGE organized scientists from five countries to study air/sea fluxes, their biological forcing, and their atmospheric effects. Three aircraft, two ships, two islands, and a dozen constant-density balloons were used to test a Lagrangian strategy for studying two airmasses. By repeatedly sampling the same air, we hoped to reduce the perennial problem of deconvoluting transport and chemistry so that we can clearly understand processes and fluxes. In this way we will improve our understanding of the marine nitrogen budget (including both ammonia emissions and nitrate deposition), as well as the climatically-important sulfur cycle and DMS emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, B.A., 1989, Aerosols, cloud microphysics, and fractional cloudiness, Science, 245:1227–1230.

    Article  PubMed  CAS  Google Scholar 

  • Andreae, M.O., 1986, The ocean as a source of atmospheric sulfur compounds, in: “The Role of Air-Sea Exchange in Geochemical Cycling,” P. Buat-Menard (ed.), D. Reidel, Hingham, MA, U.S., pgs. 331–362.

    Chapter  Google Scholar 

  • Bates, T.S. and J.D. Cline, 1985, The role of the ocean in a regional sulfur cycle, J. Geophys. Res., 90:9168–9172.

    Article  CAS  Google Scholar 

  • Bates, T.S., R.P. Kiene, G.V. Wolfe, P.A. Matrai, F.P. Chavez, K.R. Buck, B.W. Blomquistand R.L. Cuhel, 1993, The cycling of sulfur in surface seawater of the northeast Pacific, J. Geophys. Res., in press.

    Google Scholar 

  • Charlson, R.J., J.E. Lovelock, M.O. Andreae and S.G. Warren, 1987, Oceanic phytoplankton, atmospheric sulfur, cloud albedo, and climate, Nature, 326:655–661.

    Article  CAS  Google Scholar 

  • Duce, R.A., 1986, The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity, in: “The Role of Air-Sea Exchange in Geochemical Cycling,” P. Buat-Menard (ed.), pgs. 497–529, D. Reidel, Hingham, MA, U.S.

    Chapter  Google Scholar 

  • Greene, R.M., Z.S. Kolber, D.S. Swift, N.W. Tindale and P.G. Falkowski, 1993, Physiological limitation of phytoplankton photosynthesis in the eastern equatorial Pacific determined from natural variability in the quantum yield of fluorescence, Limnol. Oceanogr., in press.

    Google Scholar 

  • Hanson, A.K., N.W. Tindale, M.A.R. Abdel-Moati, J.E. Prentice, D.W. O’Sullivan, 1993, Influence of a rain event on iron, peroxide, and phytoplankton in the surface waters of the equatorial Pacific ocean, in preparation.

    Google Scholar 

  • Huebert, B.J., T.S. Bates, A. Bandy, S. Larsen and R.A. Duce, 1990, IGAC/MAGE: International Planning for Air/Sea Exchange Research, EOS, 71(35).

    Google Scholar 

  • Huebert, B.J., S.G. Howell, P. Laj, J.E. Johnson, T.S. Bates, P.K. Quinn, S.A. Yvon, E.S. Saltzman, V. Yegorov, A.D. Clarke and J.N. Porter, 1993, Observations of the atmospheric sulfur cycle on SAGA-3, J. Geophys. Res., 98:16,985–16,996.

    Google Scholar 

  • Johnson, K.S., K.H. Coale, V.A. Elrod and N.W. Tindale, 1993, Iron photochemistry and bioavailability in equatorial Pacific waters, Marine Chem., in press.

    Google Scholar 

  • Kawa, S.R. and R. Pearson, Jr., 1989, Ozone budgets from the dynamics and chemistry of marine stratocumulus experiment, J. Geophys. Res., 94:9809–9817.

    Article  CAS  Google Scholar 

  • Langner, J., T.S. Bates, R.J. Charlson, A.D. Clarke, P.A. Durkee, J. Gras, J. Heintzenberg, DJ. Hoffman, B. Huebert, C. Leck, J. Lelieveld, J.A. Ogren, J. Prospero, P.K. Quinn, H. Rodhe and A.G. Ryaboshapko, 1993, “The global atmospheric sulfur cycle: An evaluation of model predictions and observations,” Report No. CM-81, ISSN 0280-445X, Dept. of Meteorology, Stockholm Univ.

    Google Scholar 

  • Liss, P.S., J.N. Galloway, 1993, Air-Sea exchange of sulphur and nitrogen and their interaction in the marine atmosphere, in: “Interactions of C, N, P and S Biogeochemical Cycles and Global Change,” R. Wollast, F. T. Mackenzie and L. Chou (eds.), Springer-Verlag, pgs. 259-281.

    Google Scholar 

  • Lenschow, D.H., R.J. Pearson and B.B. Stankov, 1981, Estimating the ozone budget in the boundary layer by use of aircraft measurements of ozone eddy flux and mean concentration, J. Geophys. Res., 86:7291–7297.

    Article  CAS  Google Scholar 

  • Martin, J.H., R.M. Gordon, and S.E. Fitzwater, 1991, The case for iron, Limnol. Oceanogr., 36:1793–1802.

    Article  Google Scholar 

  • Yin, F., D. Grosjean and J.H. Seinfeld, 1990, Photooxidation of DMS and DMDS. I: Mechanism development, J. Atmos. Chem., 11:309–364.

    Article  CAS  Google Scholar 

  • Young, R.W., K.L. Carder, P.R. Betzer, D.K. Costello, R.A. Duce, G.R. Ditullio, N.W. Tindale, E.A. Laws, M. Uematsu, J.T. Merrill and R.A. Feely, 1991, Atmospheric iron inputs, primary productivity, and phytoplankton responses in the north Pacific, Global Biogeochem. Cycles, 5:119–134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huebert, B.J., Bates, T.S., Tindale, N.W. (1994). Marine Aerosol and Gas Exchange and Global Atmospheric Effects. In: Prinn, R.G. (eds) Global Atmospheric-Biospheric Chemistry. Environmental Science Research, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2524-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2524-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6075-9

  • Online ISBN: 978-1-4615-2524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics