Cryogenic Helium System Angular Momentum and Moment Fluctuations Driven by Gravity Gradient in Microgravity

  • R. J. Hung
  • H. L. Pan
Chapter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 39)

Abstract

The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration and gravity jitter acceleration, in particular the effect of surface tension on partially-filled rotating fluids with special example applicable to a full-scale Gravity Probe-B Spacecraft dewar tank have been investigated. Results of slosh wave excitation along liquid-vapor interface induced by gravity gradient acceleration indicated that one-up one-down and one-down one-up oscillations of two bubbles in the cross-section of doughnut profiles in the vertical r-z plane of rotating dewar, and an eccentric contour of bubble rotating around the axis of dewar in horizontal r-θ plane. Results of slosh wave excitation along liquid-vapor interface induced by gravity jitter acceleration indicated equivalent to time-dependent oscillatory forces which push bubble in the combined bubble motion of down-and-up and leftward-and-rightward as the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

Keywords

Convection Helium Azimuth Olin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkinson, D. T., Bender, P. L., Eardley, D. M., Gaisser, T. K. Hartle, J. B., Israel, M. H., Jones, L. W., Partridge, R. B., Schramm, D. N., Shapiro, I. I., Vessort, R. F. C., and Wagoner, R. V., Physics Today, 39: 43 (1986).CrossRefGoogle Scholar
  2. 2.
    Kamotani, Y., Prasad, A., and Oastrach, S., AIAA J., 19: 511 (1981).CrossRefGoogle Scholar
  3. 3.
    Hung, R. J., Lee, C. C., and Leslie, F. W., J. of Propulsion and Power, 7: 556 (1991).CrossRefGoogle Scholar
  4. 4.
    Hung, R. J., and Shyu, K. L., J. Spacecraft and Rockets, 29: 279 (1991).CrossRefGoogle Scholar
  5. 5.
    Hung, R. J., and Shyu, K. L., Acta Astronautica, 25: 709 (1991).CrossRefGoogle Scholar
  6. 6.
    Leslie, F. W., J. of Fluid Mechanics, 16: 269 (1985).CrossRefGoogle Scholar
  7. 7.
    Mason, P., Collins, D., Petrac, D., Yang, L., Edeskuty, F., Schuch, A., and Williamson, K., Proceedings 7th International Cryogenic Engineering Conferences, (1978).Google Scholar
  8. 8.
    Avduyevsky V. S. (editor), Scientific Foundations of Space Manufacturing, MIR, Moscow, USSR (1984).Google Scholar
  9. 9.
    Forward, R. L., Physical Review, Series D, 267: 735 (1982).Google Scholar
  10. 10.
    Misner, C. W., Thome, K. S., and Wheeler, J. A., W. H. Freeman Co., Gravitation San Francisco, CA, p. 1279 (1973).Google Scholar
  11. 11.
    Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W., J. Spacecraft and Rockets, 26: 167 (1989).CrossRefGoogle Scholar
  12. 12.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Acta Astronautica, 21: 309 (1990).CrossRefGoogle Scholar
  13. 13.
    Hung, R. J., Lee, C. C., and Shyu, K. L., J. Spacecraft and Rockets, 28: 71 (1991).CrossRefGoogle Scholar
  14. 14.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Acta Astronautica, 25: 523 (1991).CrossRefGoogle Scholar
  15. 15.
    Hung, R. J., and Shyu, K. L., Acta Astronautica, 25: 379 (1991).CrossRefGoogle Scholar
  16. 16.
    Hung, R. J., Lee, C. C., and Leslie, F. W., J. Guidance. Control and Dynamics, 15: 817 (1992).CrossRefGoogle Scholar
  17. 17.
    Hung, R. J., Shyu, K. L., and Lee, C. C., J. Spacecraft and Rockets, 29: 523 (1992).CrossRefGoogle Scholar
  18. 18.
    Hung, R. J., Shyu, K. L., and Lee, C. C., J. Propulsion and Power, 8; 778 (1992).CrossRefGoogle Scholar
  19. 19.
    Hung, R. J., and Shyu, K. L., Acta Astronautica, 26: 425 (1992).CrossRefGoogle Scholar
  20. 20.
    Harlow, F. H., and Welch, J. E., Physics Fluids, 8: 2182 (1965).CrossRefGoogle Scholar
  21. 21.
    Spalding, D. B., Int. J. Numerical Methods in Engineering, 4: 551 (1972).CrossRefGoogle Scholar
  22. 22.
    Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere-McGraw-Hill, New York, p. 197 (1980).Google Scholar
  23. 23.
    Patankar, S. V., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows, Int. J. of Heat Mass Transfer, 15: 15 (1972).Google Scholar
  24. 24.
    Hung, R. J., Lee, C. C., and Leslie, F. W., J. Fluids and Structure, 6: 493 (1992).CrossRefGoogle Scholar
  25. 25.
    Hung, R. J., and Shyu, K. L., J. Propulsion and Power, 8: 987 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. J. Hung
    • 1
  • H. L. Pan
    • 1
  1. 1.Mechanical and Aerospace Engineering DepartmentThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations