Computer Programs for the Calculation of Thermodynamic Properties of Cryogens and other Fluids

  • E. W. Lemmon
  • R. T. Jacobsen
  • S. G. Penoncello
  • S. W. Beyerlein
Chapter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 39)

Abstract

A set of computer subprograms for calculating thermodynamic properties of cryogenic fluids has been developed. These subprograms can be used interactively from a menu-driven utility program or as functions or subroutines in application programs. The subprograms are written in standard FORTRAN 77 and provide for the direct calculation of single phase and saturation properties from a wide variety of input variable pairs using a comprehensive set of iterative routines. The equations of state selected for these fluids are the most accurate formulations available. All equations of state have been converted to a common functional form. ALLPROPS, a menu-driven interactive driver, can be used to calculate a variety of thermodynamic properties. Options are available for table generation and alternate unit selection.

Keywords

Entropy Enthalpy Compressibility Cyclohexane Penta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobsen, R.T, Penoncello, S.G., Beyerlein, S.W., Clarke, W.P., and Lemmon, E.W., A thermodynamic property formulation for air, Fluid Phase Equilibria, 79: 113–124, (1992).CrossRefGoogle Scholar
  2. 2.
    Jacobsen, R.T, Stewart, R.B., and Jahangiri, M., Thermodynamic properties of nitrogen from the freezing line to 2000 K at pressures to 1000 MPa, J. Phys. Chem. Ref. Data, 15(2): 735–909, (1986).CrossRefGoogle Scholar
  3. 3.
    Stewart, R.B. and Jacobsen, R.T, Thermodynamic properties of argon from the triple point to 1200 K at pressures to 1000 MPa, J. Phys. Chem. Ref. Data, 18(2): 639–798, (1989).CrossRefGoogle Scholar
  4. 4.
    Schmidt, R. and Wagner, W., A new form of equation of state for pure substances and its application to oxygen, Fluid Phase Equilibria, 19: 175–200, (1985).CrossRefGoogle Scholar
  5. 5.
    Katti, R.S., “Thermodynamic Properties of Neon, from the Triple Point to 700K with Pressures up to 700 MPa,” M.S. Thesis, University of Idaho, Moscow, ID, (1985).Google Scholar
  6. 6.
    McCarty, R.D., “Hydrogen, Technological Survey — Thermophysical Properties,” NASA SP-3089, National Aeronautics and Space Administration, (1975).Google Scholar
  7. 7.
    Younglove, B.A., Thermophysical properties of fluids, J. Phys. Chem. Ref. Data, 11(1): 4–6, (1982).Google Scholar
  8. 8.
    McCarty, R.D. and Arp, V.D., A new wide range equation of state for helium, Adv. Cryo. Eng., 35: 1465–1475, (1990).Google Scholar
  9. 9.
    Arp, V.D., State equation of liquid helium-4 from 0.8 to 2.5 K, J. Low Temp. Phys., 79: 93–114, (1990).CrossRefGoogle Scholar
  10. 10.
    Setzmann, U. and Wagner, W., A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa, J. Phys. Chem. Ref. Data, 20(6): 1061, (1991).CrossRefGoogle Scholar
  11. 11.
    Friend, D.G., Ingham, H., and Ely, J.F. Thermophysical properties of ethane, J. Phys. Chem. Ref. Data, 20(2): 275–347, (1991).CrossRefGoogle Scholar
  12. 12.
    Younglove, B.A. and Ely, J.F., Thermophysical properties of fluids, J. Phys. Chem. Ref. Data, 16(4): 577–582, (1987).Google Scholar
  13. 13.
    Jahangiri, M., Jacobsen, R.T, Stewart, R.B., and McCarty, R.D., Thermodynamic properties of ethylene from the freezing line to 450K at pressures to 260 MPa, J. Phys. Chem. Ref. Data, 15(2): 593–734, (1986).CrossRefGoogle Scholar
  14. 14.
    Angus, S., Armstrong, B., and de Reuck, K.M., “International Thermodynamic Tables of the Fluid State-7 Propylene,” International Union of Pure and Applied Chemistry, Pergamon Press, Oxford, (1980).Google Scholar
  15. 15.
    Penoncello, S.G., “The Determination of a Thermodynamic Property Formulation for Cyclohexane,” Final Report on Contract No. 4924–0999, University of North Dakota to E.I. DuPont DeNemours and Company, Incorporated, (1988).Google Scholar
  16. 16.
    Saul, A. and Wagner, W., A fundamental equation for water covering the range from the melting line to 1273K at pressures up to 25000 MPa, J. Phys. Chem. Ref. Data, 18(4): 1537–1564, (1989).CrossRefGoogle Scholar
  17. 17.
    Ely, J.F., Magee, J.W., and Haynes, W.M., Thermophysical properties for special high CO2 content mixtures, Research Report 110, Gas Processors Association, (1987).Google Scholar
  18. 18.
    Haar, L. and Gallagher, J.S., Thermodynamic properties of ammonia, J. Phys. Chem. Ref. Data, 7(3): 635–792, (1978).CrossRefGoogle Scholar
  19. 19.
    Jacobsen, R.T, Penoncello, S.G., and Lemmon, E.W., A fundamental equation for trichlorofluoro- methane (R-11), Fluid Phase Equilibria, 80: 45–56, (1992).CrossRefGoogle Scholar
  20. 20.
    Penoncello, S.G., Jacobsen, R.T, and Lemmon, E.W., A fundamental equation for dichlorodifluoromethane (R-12), Fluid Phase Equilibria, 80: 57–70, (1992).CrossRefGoogle Scholar
  21. 21.
    Downing, R.C., Refrigerant equations, Trans. ASHRAE, 80, Part II(2313): 158–169, (1974).Google Scholar
  22. 22.
    Martin, J.J., Welshans, L.M., Chou, C.H., and Gryka, G.E., “Data and Equations for Some Thermodynamic Properties of ‘Freon-13B1’ (CBrF3),” Engineering Research Institute, Project M777, University of Michigan, Ann Arbor, (1953).Google Scholar
  23. 23.
    Kamei, A., Beyerlein, S.W., and Lemmon, E.W., A fundamental equation for chlorodifluoromethane (R-22), Fluid Phase Equilibria, 80: 71–86, (1992).CrossRefGoogle Scholar
  24. 24.
    Hou, Y.C. and Martin, J.J., Physical and thermodynamic properties of trifluoromethane, AIChE Journal, 5(1): 125–29, (1959).CrossRefGoogle Scholar
  25. 25.
    Malbrunot, P.F., Meunier, P.A., Scatena, G.M., Mears, W.H., Murphy, K.P., and Sinka, J.V., Pressure-volume-temperature behavior of difluoromethane, J. Chem. Eng. Data, 13(1): 16–21, (1968).CrossRefGoogle Scholar
  26. 26.
    Mastroianni, M.J., Stahl, R.F., and Sheldon, P.N., Physical and thermodynamic properties of 1,1,2-trifluorotrichloroethane (R-113), J. Chem. Eng. Data, 23(2): 113–118, (1978).CrossRefGoogle Scholar
  27. 27.
    Hules, K.R. and Wilson, D.P., An interim engineering model of the thermodynamic properties of 1,2-dichlorotetrafluoroethane, refrigerant R-114, Proceedings of the 8th Symposium on Thermophysical Properties, Vol. 2, J. Sengers, editor, A.S.M.E., New York, (1982).Google Scholar
  28. 28.
    Mears, W.H., Rosenthal, E., and Sinka, J.V., Pressure-volume-temperature behavior of pentafluoromono-chloroethane, J. Chem. Eng. Data, 11(3): 338–343, (1966).CrossRefGoogle Scholar
  29. 29.
    Ulen, N.E., Penoncello, S.G., and Jacobsen, R.T, A fundamental equation of state for 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), Submitted to the ASME Winter Annual Meeting, (1993).Google Scholar
  30. 30.
    Wilson, L.C., Wilding, W.V., Wilson, G.M., Rowley, R.L., Felix, V.M., and Chisolm-Carter, T., Thermophysical properties of HFC-125, Eleventh Symposium on Thermophysical Properties, (1991).Google Scholar
  31. 31.
    Tillner-Roth, R. and Baehr, H.D., A fundamental equation of state for R-134a, private communication to S.G. Penoncello, (1992).Google Scholar
  32. 32.
    Weber, L.A., PVT and thermodynamic properties of R141B in the gas phase, Paper Number 69, 18th Int. Cong. Ref., Montreal, Canada, (1991).Google Scholar
  33. 33.
    Mears, W.H., Stahl, R.F., Orfeo, S.R., Shair, R.C., Kells, L.F., Thompson, W., and McCann, H., Thermodynamic properties of halogenated ethanes and ethylenes, Ind. Engr. Chem., 47(7): 1449–1454, (1955).CrossRefGoogle Scholar
  34. 34.
    Sinka, J.V. and Murphy, K.P., Pressure-volume-temperature relationship for a mixture of difluorodichloromethane and 1,1-difluoroethane, J. Chem. Eng. Data, 12(3): 315–317, (1967).CrossRefGoogle Scholar
  35. 35.
    Sinka, J.V., Rosenthal, E., and Dixon, R.P., Pressure-volume-temperature relationship for a mixture of monochlorotrifluoromethane and trifluoromethane, J. Chem. Eng. Data, 15(1): 73–74, (1970).CrossRefGoogle Scholar
  36. 36.
    James, M.L., Smith, G.M., and Wolford, J.C., “Applied Numerical Methods for Digital Computation, Second Edition,” Harper and Row Publishers, Inc., New York, NY, (1977).Google Scholar
  37. 37.
    Chambers, G., A quadratic formula for finding the root of an equation, Mathematics of Computation, 25(114), (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • E. W. Lemmon
    • 1
  • R. T. Jacobsen
    • 1
  • S. G. Penoncello
    • 1
  • S. W. Beyerlein
    • 1
  1. 1.Center for Applied Thermodynamic StudiesUniversity of Idaho, College of EngineeringMoscowUSA

Personalised recommendations