Cryogenic Design Considerations of Solid Argon Calorimeters and Performance of a Solid Argon Test Cell

  • Robert Sanders
  • Henryk Piekarz
Chapter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 39)

Abstract

This paper presents the cryogenic design and discusses the operation of a small test cell with a 20.6 L cryostat, built to demonstrate the feasibility of Solid Argon Calorimeters (SAC) for possible use in high energy physics experiments. In addition, design considerations for a large SAC are described. The test cell froze argon in a solid block around the particle detector assembly reaching temperatures more than 6 K below the argon freezing temperature. Aspects of the test cell design can be used for a large SAC including the use of two liquid nitrogen cooling circuits; one for condensing argon gas and controlling the argon pressure, another for freezing the argon around the detector assembly with gravity fed liquid nitrogen at 77 K. An insulated open-top box surrounding the detector assembly separated the solid argon from warmer liquid argon restricting the growth of the solid argon. A generalized look is taken at the heat transfer problems of a SAC.

Keywords

Methane Convection Foam Platinum Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Urbin et al., Cryogenic design and operation of a liquid argon photon/hadron calorimeter at Fermilab, in: “Advances in Cryogenic Engineering,” vol. 35, Plenum Press, New York (1990), p. 1803.Google Scholar
  2. 2.
    G. T. Mulhollond et al., Cryogenic design of the d-zero liquid argon collider calorimeter, in: “Advances in Cryogenic Engineering,” Vol. 33, Plenum Press, New York (1988), p. 1121.Google Scholar
  3. 3.
    W. Cyko et al., Nucl. Instr. & Meth., 196: 397 (1982).CrossRefGoogle Scholar
  4. 4.
    V. Brisson et al., Nucl. Instr. & Meth., 215: 79 (1983).CrossRefGoogle Scholar
  5. 5.
    H. Piekarz, Solid argon calorimetry, in: “Proceedings of the First International Conference on Calorimetry in High Energy Physics,” World Scientific, (1990).Google Scholar
  6. 6.
    H. Piekarz et al., Fast sampling calorimetry with solid argon ionization chambers, SSC R&D Proposal 30500, (1991).Google Scholar
  7. 7.
    H. Piekarz et al., Fast sampling calorimetry with solid argon ionization chambers, to be published in: Proceedings of the III International Conference on Calorimetry in High Energy Physics”, (1992).Google Scholar
  8. 8.
    L. Miller, S. Howe, and W. Spear, Phys. Rev., 166: 871 (1968).CrossRefGoogle Scholar
  9. 9.
    N. Gee, M. Floriano, T. Wada, S. Huang, and G. Freeman, J. Appl. Phys., 57: 1097 (1985).CrossRefGoogle Scholar
  10. 10.
    W. Spear, and P. Le Comber, in: “Rare Gas Solids” vol. II, M. L. Klein and J. A. Venables, ed., Academic Press Inc. (1976), p. 1120.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Robert Sanders
    • 1
  • Henryk Piekarz
    • 2
  1. 1.Fermi National Accelerator LaboratoryBataviaUSA
  2. 2.Florida State UniversityTallahasseeUSA

Personalised recommendations