Skip to main content

Homogeneous Turbulence within a Superfluid Helium Wind Tunnel

  • Chapter
  • 36 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 39))

Abstract

We generate homogeneous turbulence using a moving grid within a stationary 1 cm square channel filled with superfluid helium. The root mean square vorticity is linked to the quantized line density, which we observe from second sound attenuation. This provides a simple, nonintrusive probe of the turbulent intensity. Results reveal how the time decay of turbulence depends upon the time evolution of the Reynolds number and length scale of the energy containing eddies, demonstrating the value of Kolmogorov scaling arguments applied to turbulence in helium II.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Research

  1. R.J. Donnelly, editor, “High Reynolds Number Flows Using Liquid and Gaseous Helium”, Springer-Verlag, New York (1991).

    Google Scholar 

  2. M.R. Smith, R.J. Donnelly, N. Goldenfeld, and W.F. Vinen, Decay of vorticity in homogeneous turbulence, submitted for publication, Phys. Rev. Lett. (1993).

    Google Scholar 

  3. M.R. Smith, “Evolution and Propagation of Turbulence in Helium II”, PhD thesis, University of Oregon (1992).

    Google Scholar 

  4. W.F. Vinen, Mutual friction in a heat current in liquid helium II. III., Proc. Roy. Soc. A 242: 493 (1957).

    Article  CAS  Google Scholar 

  5. K.W. Schwarz, and J.R. Rozen, Transient behavior of superfluid, Phys. Rev. B 44: 7563 (1991).

    Article  Google Scholar 

  6. R.J. Donnelly, “On the Hydrodynamics of Superfluid Helium”, PhD thesis, Yale University (1956).

    Google Scholar 

  7. P.L. Walstrom, J.G. Weisend II, J.R. Maddocks, and S.W. Van Sciver, Turbulent flow pressure drop in various He II transfer system components, Cryogenics 28, 101 (1988).

    Article  Google Scholar 

  8. D.C. Samuels, The response of superfluid vortex filaments to concentrated normal fluid vorticity, Phys. Rev. B 46: 11714 (1992).

    Article  Google Scholar 

  9. T. Yamazaki, “Study of Thermal Counterflow Jet in Hell Using Laser Doppler Velocimeter”, Masters thesis, University of Tsukuba (1989).

    Google Scholar 

  10. G.I. Taylor, Proc. Roy. Soc. A 151: 421 (1935).

    Article  Google Scholar 

  11. A.N. Kolmogorov, Izv. Akad. Nauk. SSR 6: 56 (1942) [Proc. Roy. Soc. A 434:15 (1991)].

    Google Scholar 

  12. J.O. Hinze, “Turbulence” Second Edition, McGraw-Hill, New York (1975).

    Google Scholar 

  13. G.K. Batchelor, “The Theory of Homogeneous Turbulence”, Cambridge University Press, Cambridge (1953).

    Google Scholar 

  14. G. Comte-Bellot, and S. Corrsin, J. Fluid Mech. 25, 657 (1966).

    Article  Google Scholar 

  15. L.D. Landau, and E.M. Lifshitz, “Fluid Mechanics” Second Edition, Pergamon Press, New York (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, M.R., Donnelly, R.J., Goldenfeld, N., Vinen, W.F. (1994). Homogeneous Turbulence within a Superfluid Helium Wind Tunnel. In: Kittel, P. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2522-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2522-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6074-2

  • Online ISBN: 978-1-4615-2522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics