Advertisement

Unsteady Thermal Convection of Melts in a 2-D Horizontal Boat in a Centrifugal Field with Consideration of the Coriolis Effect

  • F. Tao
  • Y. Zheng
  • W. J. Ma
  • M. L. Xue
Chapter

Abstract

A rotating centrifuge introduces the centrifugal acceleration and the Coriolis force acting on melts while melt growth is being carried out in the centrifuge. These two forces influence melt convection and, in turn, modify the transport of dopant and impurities. In this paper the effects of varying the centrifugal acceleration and the Coriolis force were studied numerically. We paid attention to unsteady thermal convection of melts in a two-dimensional rectangular boat with relevance to crystal growth in a centrifuge by horizontal Bridgman technique. The mathematical model was constructed by the continuity, Navier-Stokes and energy equations with the Boussinesq approximation, which was solved by the finite control volume method with fully implicit, steady, time-marching, central-difference discretization. The calculations based on the simplified model reveal that the centrifugal acceleration enhances buoyancy force, which may dominate the convection and induce oscillation, and the Coriolis force may stabilize or destabilize the flow depending on the rotation sense of the centrifuge. This numerical results as well as the experiments of temperature measurement give a satisfactory explanation of the results described previously.12 13

Keywords

Crystal Growth Coriolis Force Central Difference Scheme Earth Gravity High Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Carruthers, J. Crystal Growth 32:13 (1976).CrossRefGoogle Scholar
  2. 2.
    W.E. Langlois, Ann. Rev. Fluid Mech. 17:191 (1985).CrossRefGoogle Scholar
  3. 3.
    G. Müller, “Crystal Growth from the Melt,” Springer, Berlin (1988).CrossRefGoogle Scholar
  4. 4.
    G. Müller, P. Kyr and E. Schmidt, J. Crystal Growth 49:387 (1980).CrossRefGoogle Scholar
  5. 5.
    G. Müller, G. Neumann, J. Crystal Growth 59:548 (1982).CrossRefGoogle Scholar
  6. 6.
    G. Müller, G. Neumann, J. Crystal Growth 63:58 (1983).CrossRefGoogle Scholar
  7. 7.
    G. Müller, J. Crystal Growth 99:1242 (1990).CrossRefGoogle Scholar
  8. 8.
    W. Weber, G. Neumann and G. Müller, J. Crystal Growth 100:145 (1990).CrossRefGoogle Scholar
  9. 9.
    G. Müller, G. Neumann and W. Weber, J. Crystal Growth 119:8 (1992).CrossRefGoogle Scholar
  10. 10.
    H. Rodot and L.L. Regel, J. Crystal Growth 79:77 (1986).CrossRefGoogle Scholar
  11. 11.
    H. Rodot and L.L. Regel, J. Crystal Growth 104:280 (1990).CrossRefGoogle Scholar
  12. 12.
    X.R. Zhong, B.J. Zhou, Q.M. Yan, F.N. Cao, C.J. Li, L.Y. Lin and W.J. Ma, Y. Zheng, F. Tao, M.L. Xue, J. Crystal Growth 119:74 (1992).CrossRefGoogle Scholar
  13. 13.
    B.J. Zhou, F.N. Cao, L.Y. Lin and W.J. Ma, Y. Zheng, F. Tao, M.L. Xue, Growth of GaAs single crystals under high gravity conditions, “The 2nd International Workshop Materials Processing in High Gravity,” Potsdam, New York, (June 1993).Google Scholar
  14. 14.
    W.A. Arnold, W.R. Wilcox, F. Carlson, A. Chait and L.L. Regel, J. Crystal Growth 119:24 (1992).CrossRefGoogle Scholar
  15. 15.
    W.J. Ma, F. Tao, Y. Zheng, M.L. Xue and B.J. Zhou, L.Y. Lin, Response of temperature oscillations in a Tin melt to the effects of centrifuge, “The 2nd International Workshop Materials Processing in High Gravity,” Potsdam, New York, (June 1993).Google Scholar
  16. 16.
    M.J. Crochet, F.T. Geyling and J.J. Van Schaftingen, Finite element method for calculating the horizontal Bridgman growth of semiconductor crystals, in: “Finite Elements in Fluids-Volume 6,” R.H. Gallagher, G.F. Garey, J.T. Oden and O.C. Zienkiewicz, ed., John Wiley & Sons, Chichester (1985).Google Scholar
  17. 17.
    J.P. Fontaine, E. Crespo del Arco, A. Randriamampianina, G.P. Extrémet and P. Bontoux, Adv. Space Res. 8:265 (1988).CrossRefGoogle Scholar
  18. 18.
    S.V. Patankar. “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D.C. (1980).Google Scholar
  19. 19.
    W.J. Minkowycz, E.M. Sparrow, G.E. Schneider and R.H. Pletcher, “Handbook of Numerical Heat Transfer,” John Wiley & Sons, New York (1988).Google Scholar
  20. 20.
    A. Bottaro and A. Zebib, Phys. Fluids, 31:495 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • F. Tao
    • 1
  • Y. Zheng
    • 1
  • W. J. Ma
    • 1
  • M. L. Xue
    • 1
  1. 1.Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations