Crystal Growth of Energetic Materials during High Acceleration using an Ultracentrifuge

  • M. Y. D. Lanzerotti
  • J. Autera
  • J. Pinto
  • J. Sharma


Studies of the growth of crystals of energetic materials under conditions of high acceleration are reported. This new way of growing crystals of energetic materials by using a concentration gradient is different than the usual procedure of crystal growth by solvent evaporation at constant temperature or by slow cooling. When a solution is accelerated in an ultracentrifuge, the solute molecules concentrate at the outer edge of the tube if the solute is more dense than the solvent. If the solution is initially saturated, then the solution at the outer edge of the tube becomes supersaturated and crystal growth can occur. Results are presented for growth of TNT and RDX crystals at high g in an ultracentrifuge.


Crystal Growth Saturated Solution Energetic Material High Acceleration Material Research Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Laudise, “The Growth of Single Crystals,” Prentice-Hall, Inc., Englewood Cliffs (1970).Google Scholar
  2. 2.
    A. Holden and P. Singer, “Crystals and Crystal Growing,” Anchor Books-Doubleday, New York (1960).Google Scholar
  3. 3.
    W. L. Garrett, “The growth of large lead azide crystals”, Mat. Res. Bull. 7:949 (1972).CrossRefGoogle Scholar
  4. 4.
    P. J. Shlichta and R. E. Knox, Growth of crystals by centrifugation, J. Crystal Growth, 3:808 (1968).CrossRefGoogle Scholar
  5. 5.
    P. J. Shlichta, Crystal growth and materials processing above 1000 g, J. Crystal Growth, 119:1 (1992).CrossRefGoogle Scholar
  6. 6.
    I. Amato, The high side of gravity, Science, 253:30 (1991).CrossRefGoogle Scholar
  7. 7.
    L. L. Regel, Materials Processing In High Gravity, pp. 1–44, Moscow, USSR, 1990.Google Scholar
  8. 8.
    H. Rodot, L. L. Regel, and A. M. Turtchaninov, Crystal growth of IV-VI semiconductors in a centrifuge, J. Crystal Growth, 104:280 (1990).CrossRefGoogle Scholar
  9. 9.
    O. M. Griffith, “Techniques of Preparative, Zonal, and Continuous Flow Ultracentrifugation,” Beckman Instruments Inc. (1986).Google Scholar
  10. 10.
    Proc. First International Workshop on Materials Processing in High Gravity, L. L. Regel, M. Rodot, W. R. Wilcox, eds. J. Crystal Growth, 119:1–176 (1992).Google Scholar
  11. 11.
    J. J. Dick, Plane shock initiation of detonation in gamma-irradiated pentaerythritol tetranitrate, J. Appl. Phys. 53:6161 (1982).CrossRefGoogle Scholar
  12. 12.
    J. J. Dick, Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive, J. App. Phys. Lett. 44:859 (1984).CrossRefGoogle Scholar
  13. 13.
    J. J. Dick, POP plot and Arrhenius parameters for <110> pentaerythritol tetranitrate single crystals, in: “Shock Compression of Condensed Matter-1986,” Y. M. Gupta, ed., Plenum Press, New York (1986).Google Scholar
  14. 14.
    J. J. Dick, R. N. Mulford, W. J. Spencer, D. R. Pettit, E. Garcia, and D. C. Shaw, Shock response of pentaerythritol tetranitrate single crystals, J. Appl. Phys. 70:3572 (1991).CrossRefGoogle Scholar
  15. 15.
    J. Dick, E. Garcia, and D. C. Shaw, Shock initiation of pentaerythritol tetranitrate crystals: steric effects due to plastic flow, in “Shock Compression of Condensed Matter-1991,” S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker, eds., Elsevier, Amsterdam (1992).Google Scholar
  16. 16.
    J. J. Dick, M. C. Whitehead, and A. R. Martinez, Crystal orientation dependence of elastic precursor strength in pentaerthritol tetranitrate, Bull. Am. Phys. Soc., 38:1564 (1993).Google Scholar
  17. 17.
    H. G. Gallagher and J. N. Sherwood, The growth and perfection of single crystals of TNT, in Materials Research Society Symposium Proceedings “Structure and Properties of Energetic Materials”, Donald H. Liebenberg, Ronald W. Armstrong, and John J. Gilman, eds., Materials Research Society, Pittsburgh 296:215 (1993).Google Scholar
  18. 18.
    S. Morrow, Growing Explosive Crystals, U. S. Army ARDEC, private communication (1989).Google Scholar
  19. 19.
    B. M. Dobratz and P. C. Crawford, LLNL Explosives Handbook, “Properties of Chemical Explosives and Explosive Simulants,” UCRL-52997, Lawrence Livermore National Laboratory, University of California, Livermore, CA, 31 January 1985.Google Scholar
  20. 20.
    R. C. Weast, “Handbook of Chemistry and Physics,” CRC Press, Cleveland, 1975–1976 edition.Google Scholar
  21. 21.
    S. M. Kaye, “Encyclopedia of Explosives and Related Items,” Picatinny Arsenal Technical Report 2700, 9:T263 (1980).Google Scholar
  22. 22.
    J. T. Rogers, Physical and Chemical Properties of RDX and HMX, Control No. 20-P-26, Holston Defense Corporation, August 1962.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. Y. D. Lanzerotti
    • 1
  • J. Autera
    • 1
  • J. Pinto
    • 1
  • J. Sharma
    • 2
  1. 1.U. S. Army ARDECPicatinny ArsenalUSA
  2. 2.Naval Surface Warfare CenterSilver SpringUSA

Personalised recommendations