Skip to main content

Modeling and Experiments on Epitaxial Growth on a GaAs Hemisphere Substrate at 1 g and under Hypergravity

  • Chapter
Materials Processing in High Gravity

Abstract

Centrifuge chemical vapor transport experiments under 5 and 10 g produced growth of GaAs on [001] GaAs substrate oriented with a macrostructure typical of diffusion-controlled growth. A current hypothesis for this phenomenon is that Coriolis and gravity gradient forces produced by the centrifugal motion can effectively damp buoyancy-driven convective flows.

Numerical simulation using spectral methods was carried out for axisymmetric flow regimes, and was compared to experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Shaw, Kinetics aspects in the vapour phase epitaxy of III-V compound, J. Cryst. Growth 31:130 (1975).

    Article  CAS  Google Scholar 

  2. R. Cadoret, Application of the theory of rates processes in the CVD of GaAs, Mater. Sci. 5:221 (1980).

    Google Scholar 

  3. A. Boucher and H. Hollan, Thermodynamics and experimental aspects of gallium arsenide vapor growth, J. Electrochem. Soc. 117:932 (1970).

    Article  CAS  Google Scholar 

  4. R. Cadoret and M. Cadoret, A theoretical treatment of GaAs growth by vapour phase transport for 001 orientation, J. Cryst. Growth 31:142 (1975).

    Article  CAS  Google Scholar 

  5. THERMODATA Data Bank, B.P. 66, 38402 F. Saint-Martin d’Hères.

    Google Scholar 

  6. J.L. Gentner, Vapour phase growth of GaAs by the chloride process under reduced pressure, Philips J. Res. 38:37 (1983).

    CAS  Google Scholar 

  7. R.C. Reid, J.M. Prauznitz, and T.K. Sherwood. “The Properties of Gases and Liquids,” 3rd edn., McGraw-Hill, New York (1977).

    Google Scholar 

  8. D. Gottlieb and S. Orszag. “Numerical Analysis of Spectral Methods, Theory, and Applications,” CBMS-SIAM Publications, Philadelphia (1977).

    Book  Google Scholar 

  9. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. “Spectral Methods in Fluid Dynamics,” Springer Verlag, New York (1988).

    Book  Google Scholar 

  10. G.M. Homsy and J.L. Hudson, Centrifugally-driven thermal convection in a rotating cylinder, J. Fluid Mech. 35(1):33 (1969).

    Article  Google Scholar 

  11. G. De Vahl Davis, E. Leonardi, and J.A. Reizes, Convection in a rotating annular cavity, in: “Proceedings XIVth Intern. Center for Heat and Mass Transfer Symposium,” Dubrovnik, Yugoslavia (1982).

    Google Scholar 

  12. A. Randriamampianina, P. Bontoux, and B. Roux, Ecoulements induits par la force gravifique dans une cavité cylindrique en rotation, Intern. J. Heat Mass Transfer 30:1275 (1987).

    Article  CAS  Google Scholar 

  13. A. Randriamampianina, Etude de régimes d’écoulements induits par la force gravifique dans une cavité cylindrique en rotation, Doctorate Thesis, Université Aix-Marseille II (1984).

    Google Scholar 

  14. C.W. Gear. “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall Series in Automatic Computation, G.E. Forsythe, ed., Prentice-Hall, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  15. G.D. Byrne and A.C. Hindmarsh, Stiff ODE solvers: a review of current and coming attractions, J. Comp. Phys. 70:1 (1987).

    Article  Google Scholar 

  16. L.R. Petzold. “Automatic Selection of Methods for Solving Stiff and Non-stiff Systems of Ordinary Differential Equations,” Sandia National Lab. Report SAND80-8230, Sandia National Laboratory (1980).

    Google Scholar 

  17. A.C. Hindmarsh, LSODE and LSODI: two new initial value ordinary differential equation solvers, ACM-SIGNUM Newsletter 15:10 (1990).

    Article  Google Scholar 

  18. D.B. Haidvogel and T.A. Zang, The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J. Comp. Phys. 30:137 (1979).

    Article  Google Scholar 

  19. C. Temperton, Fast mixed-radix real Fourier transforms, J. Comp. Phys. 52:340 (1979).

    Article  Google Scholar 

  20. G.P. Extremet, P. Bontoux, and B. Roux, Effect of temperature gradient locally applied on a long horizontal cavity, Heat & Fluid Flow 8(1):26 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Liya L. Regel William R. Wilcox

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Launay, JC., Bouchet, S., Randriamampianina, A., Bontoux, P., Gibart, P. (1994). Modeling and Experiments on Epitaxial Growth on a GaAs Hemisphere Substrate at 1 g and under Hypergravity. In: Regel, L.L., Wilcox, W.R. (eds) Materials Processing in High Gravity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2520-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2520-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6073-5

  • Online ISBN: 978-1-4615-2520-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics