Advertisement

Modeling and Experiments on Epitaxial Growth on a GaAs Hemisphere Substrate at 1 g and under Hypergravity

  • Jean-Claude Launay
  • Stéphanie Bouchet
  • Anthony Randriamampianina
  • Patrick Bontoux
  • Pierre Gibart
Chapter
  • 66 Downloads

Abstract

Centrifuge chemical vapor transport experiments under 5 and 10 g produced growth of GaAs on [001] GaAs substrate oriented with a macrostructure typical of diffusion-controlled growth. A current hypothesis for this phenomenon is that Coriolis and gravity gradient forces produced by the centrifugal motion can effectively damp buoyancy-driven convective flows.

Numerical simulation using spectral methods was carried out for axisymmetric flow regimes, and was compared to experiments.

Keywords

Outer Cylinder Radial Location Spectral Space Centrifugal Acceleration Gravity Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Shaw, Kinetics aspects in the vapour phase epitaxy of III-V compound, J. Cryst. Growth 31:130 (1975).CrossRefGoogle Scholar
  2. 2.
    R. Cadoret, Application of the theory of rates processes in the CVD of GaAs, Mater. Sci. 5:221 (1980).Google Scholar
  3. 3.
    A. Boucher and H. Hollan, Thermodynamics and experimental aspects of gallium arsenide vapor growth, J. Electrochem. Soc. 117:932 (1970).CrossRefGoogle Scholar
  4. 4.
    R. Cadoret and M. Cadoret, A theoretical treatment of GaAs growth by vapour phase transport for 001 orientation, J. Cryst. Growth 31:142 (1975).CrossRefGoogle Scholar
  5. 5.
    THERMODATA Data Bank, B.P. 66, 38402 F. Saint-Martin d’Hères.Google Scholar
  6. 6.
    J.L. Gentner, Vapour phase growth of GaAs by the chloride process under reduced pressure, Philips J. Res. 38:37 (1983).Google Scholar
  7. 7.
    R.C. Reid, J.M. Prauznitz, and T.K. Sherwood. “The Properties of Gases and Liquids,” 3rd edn., McGraw-Hill, New York (1977).Google Scholar
  8. 8.
    D. Gottlieb and S. Orszag. “Numerical Analysis of Spectral Methods, Theory, and Applications,” CBMS-SIAM Publications, Philadelphia (1977).CrossRefGoogle Scholar
  9. 9.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. “Spectral Methods in Fluid Dynamics,” Springer Verlag, New York (1988).CrossRefGoogle Scholar
  10. 10.
    G.M. Homsy and J.L. Hudson, Centrifugally-driven thermal convection in a rotating cylinder, J. Fluid Mech. 35(1):33 (1969).CrossRefGoogle Scholar
  11. 11.
    G. De Vahl Davis, E. Leonardi, and J.A. Reizes, Convection in a rotating annular cavity, in: “Proceedings XIVth Intern. Center for Heat and Mass Transfer Symposium,” Dubrovnik, Yugoslavia (1982).Google Scholar
  12. 12.
    A. Randriamampianina, P. Bontoux, and B. Roux, Ecoulements induits par la force gravifique dans une cavité cylindrique en rotation, Intern. J. Heat Mass Transfer 30:1275 (1987).CrossRefGoogle Scholar
  13. 13.
    A. Randriamampianina, Etude de régimes d’écoulements induits par la force gravifique dans une cavité cylindrique en rotation, Doctorate Thesis, Université Aix-Marseille II (1984).Google Scholar
  14. 14.
    C.W. Gear. “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall Series in Automatic Computation, G.E. Forsythe, ed., Prentice-Hall, Englewood Cliffs, New Jersey (1971).Google Scholar
  15. 15.
    G.D. Byrne and A.C. Hindmarsh, Stiff ODE solvers: a review of current and coming attractions, J. Comp. Phys. 70:1 (1987).CrossRefGoogle Scholar
  16. 16.
    L.R. Petzold. “Automatic Selection of Methods for Solving Stiff and Non-stiff Systems of Ordinary Differential Equations,” Sandia National Lab. Report SAND80-8230, Sandia National Laboratory (1980).Google Scholar
  17. 17.
    A.C. Hindmarsh, LSODE and LSODI: two new initial value ordinary differential equation solvers, ACM-SIGNUM Newsletter 15:10 (1990).CrossRefGoogle Scholar
  18. 18.
    D.B. Haidvogel and T.A. Zang, The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J. Comp. Phys. 30:137 (1979).CrossRefGoogle Scholar
  19. 19.
    C. Temperton, Fast mixed-radix real Fourier transforms, J. Comp. Phys. 52:340 (1979).CrossRefGoogle Scholar
  20. 20.
    G.P. Extremet, P. Bontoux, and B. Roux, Effect of temperature gradient locally applied on a long horizontal cavity, Heat & Fluid Flow 8(1):26 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jean-Claude Launay
    • 1
    • 2
  • Stéphanie Bouchet
    • 1
  • Anthony Randriamampianina
    • 3
  • Patrick Bontoux
    • 3
  • Pierre Gibart
    • 4
  1. 1.PRAME - AërospatialeSt.Médard-en-Jalles CédexFrance
  2. 2.Laboratoire de Chimie du Solide du CNRSUniversité de Bordeaux 1Talence CédexFrance
  3. 3.Institut de Mécanique des Fluides - CNRSMarseilleFrance
  4. 4.Laboratoire de Physique du Solide et Energie et Energie Solaire - CNRSParc Sophia AntipolisValbonneFrance

Personalised recommendations