Microstructural Development in Pb-Sn Alloys Subjected to High-Gravity during Controlled Directional Solidification

  • R. N. Grugel
  • A. B. Hmelo
  • C. C. Battaile
  • T. G. Wang


Research conducted over the past three decades has suggested that solidification processing of metals and alloys in a centrifuge can lead to enhanced materials properties.1-11 With the potential of such processing demonstrated, there exists a need for quantitative data gathered under controlled solidification conditions. To this end, a centrifuge, dedicated to materials research, was constructed within the Materials Science and Engineering Department at Vanderbilt University. This has since been employed to investigate the effect of a high-gravity environment on microstructural development of Pb- 50 wt pct Sn alloys during controlled directional solidification.

For otherwise constant solidification processing conditions of composition, growth rate, and temperature gradient, centrifugation caused the primary dendrite arm spacing to decrease significantly. The secondary dendrite arm spacing, the eutectic spacing, and the primary dendrite trunk diameters exhibited no change with increasing gravity level.

These results are discussed in terms of suppressing convection in the bulk liquid and/or modification of the solute-enriched liquid layer about the dendrite tips. Work in progress to directly visualize effects attributed to enhanced gravity is discussed.


Bulk Liquid Primary Dendrite Gravity Level Eutectic Spacing Enhance Material Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Shlichta and R.E. Knox, J. Cryst. Growth 3-4:808 (1968).CrossRefGoogle Scholar
  2. 2.
    G. Müller, E. Schmidt and P. Kyr, J. Cryst. Growth 49:387 (1980).CrossRefGoogle Scholar
  3. 3.
    G. Müller and G. Neuman, J. Cryst. Growth 59:548 (1982).CrossRefGoogle Scholar
  4. 4.
    G. Müller and G. Neuman, J. Cryst. Growth 63:58 (1983).CrossRefGoogle Scholar
  5. 5.
    W.E. Langlois, J. Cryst. Growth 63:67 (1983).CrossRefGoogle Scholar
  6. 6.
    G. Müller, G. Neuman, and W. Weber, J. Cryst. Growth 70:78 (1984).CrossRefGoogle Scholar
  7. 7.
    G. Müller, J. Cryst. Growth 99:1242 (1990).CrossRefGoogle Scholar
  8. 8.
    W. Weber, G. Neuman and G. Müller, J. Cryst. Growth 100:145 (1990).CrossRefGoogle Scholar
  9. 9.
    H. Rodot, L.L. Regel and A.M. Turtchaninov, J. Cryst. Growth 104:280 (1990).CrossRefGoogle Scholar
  10. 10.
    B.T. Murray, S.R. Coriell and G.B. McFadden, J. Cryst. Growth 110:713 (1991).CrossRefGoogle Scholar
  11. 11.
    L.L. Regel, M. Rodot and W.R. Wilcox, eds., “Material Processing in High Gravity,” (1992).Google Scholar
  12. 12.
    M. McLean. “Directionally Solidified Materials for high Temperature Service,” The Metals Society (1983).Google Scholar
  13. 13.
    J.D. Verhoeven, J.T. Mason and R. Trivedi, Metall. Transactions A. 17A:991 (1986).CrossRefGoogle Scholar
  14. 14.
    C. Battaile, Masters Thesis, Vanderbilt University, Dept. of Materials Science and Engineering (1992).Google Scholar
  15. 15.
    C. Battaile, R.N. Grugel, A.B. Hmelo and T.G. Wang in: “Microstructural Design by Solidification Processing,” E. J. Lavernia and N.N. Gungor, eds., The Minerals, Metals and Materials Society (1992) pp 161–172.Google Scholar
  16. 16.
    R.N. Grugel, Materials Characterization 28:213 (1992).CrossRefGoogle Scholar
  17. 17.
    C. Battaile, R.N. Grugel, A.B. Hmelo and T.G. Wang: Submitted to Metallurgical Trans. A.Google Scholar
  18. 18.
    D.J. Allen and J.D. Hunt, Metall. Transactions A. 10A:1389 (1979).CrossRefGoogle Scholar
  19. 19.
    T. Okamoto, K. Kishitake and I. Besso, J. Cryst. Growth 29:131 (1975).CrossRefGoogle Scholar
  20. 20.
    T. Huang, D. Lu and Y. Zhou, Acta. Astro 17:997 (1988).CrossRefGoogle Scholar
  21. 21.
    J.D. Hunt, “Solidification and Casting of Metals,” Book 192, The Metals Society, London (1979) pp 3–9.Google Scholar
  22. 22.
    J. Liu, Scripta Met. 26:179 (1992).CrossRefGoogle Scholar
  23. 23.
    G. Frohberg, K.H. Kraatz and H. Wever in: “Scientific Results of the German Spacelab Mission D1,” P.R Sahm, R. Jensen and M.H. Keller, eds., WPF, (1986) pp 144–151.Google Scholar
  24. 24.
    W. Kurz and D.J. Fisher, Acta Metall. 29:11 (1981).CrossRefGoogle Scholar
  25. 25.
    R. Trivedi, Metall. Transactions A. 15A:977 (1984).CrossRefGoogle Scholar
  26. 26.
    V. Laxmanan, J. Cryst. Growth 83:391 (1987).CrossRefGoogle Scholar
  27. 27.
    W. Kurz and R.N. Grugel. “Materials Science Forum,” Trans Tech. Publications, Switzerland (1991) pp 185–204.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. N. Grugel
    • 1
  • A. B. Hmelo
    • 1
  • C. C. Battaile
    • 2
  • T. G. Wang
    • 1
  1. 1.Center for Microgravity Research and ApplicationsVanderbilt UniversityNashvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations