Advertisement

Introduction to Materials Processing in Large Centrifuges

  • Liya L. Regel
  • William R. Wilcox
Chapter

Abstract

This volume represents the proceedings of The Second International Workshop on Materials Processing at High Gravity, hosted by Clarkson University in June of 1993. Evidence continues to demonstrate the unique and advantageous features of centrifugation during materials processing.

In this book, the symbol “g” is sometimes used to represent Earth’s gravity and other times, especially in equations and dimensionless numbers, g designates the total acceleration vector. When g represents Earth’s gravity, then the magnitude of the total acceleration is expressed by Ng, where N is any positive number.

Through a combination of experiments and theory, we are gaining an understanding of centrifugation on phenomena of importance to materials processing. We find that it is necessary to consider not only acceleration, but also the Coriolis effect and the variation of acceleration with position. As one consequence, the vigor of buoyancy-driven convection is sometimes increased by centrifugation and sometimes decreased. Similarly, the tendency of the convection to become unstable or oscillatory may either be increased or decreased by centrifugation. On the other hand, the observed effects of centrifugation on product quality have largely gone unexplained. In this introduction, we summarize our current understanding of centrifugation effects as gained from the Workshop and the papers in this volume. We conclude with recommendations for future research efforts.

Keywords

Crystal Growth Directional Solidification Freezing Rate High Gravity Present Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Rodot, L.L. Regel, G.V. Sarafanov, H. Hamidi, I.V. Videskii, and A.M. Turtchaninov, Cristaux de tellurure de plomb elabores en centrifugeuse, J. Crystal Growth 79:77 (1986).CrossRefGoogle Scholar
  2. 2.
    H. Rodot, L.L. Regel, and A.M. Turtchaninov, Crystal growth of IV-VI semiconductors in a centrifuge, J. Crystal Growth 104:280 (1990).CrossRefGoogle Scholar
  3. 3.
    L.L. Regel, M. Rodot, and W.R. Wilcox, editors, “Material Processing in High Gravity, Proceedings of the First International Workshop on Material Processing in High Gravity,” North-Holland, Amsterdam (1992). Also volume 119 of the Journal of Crystal Growth.Google Scholar
  4. 4.
    G. Müller, E. Schmidt, and P. Kyr, Investigation of convection in melts and crystal growth under large inertial accelerations, J. Crystal Growth 49:387 (1980).CrossRefGoogle Scholar
  5. 5.
    G. Müller, Crystal growth at greater than 1 g, in: “ESA Special Publication No. 114,” European Space Agency, Paris (1980) pp 213–216.Google Scholar
  6. 6.
    G. Müller and G. Neumann, Suppression of doping striations in zone melting of InSb by enhanced convection on a centrifuge, J. Crystal Growth 59:548 (1982).CrossRefGoogle Scholar
  7. 7.
    G. Müller, Convection in melts and crystal growth, in: “Convective Transport and Instability Phenomena,” J. Zierep and H. Oertel, Jr., eds., Braun Verlag, Karlsruhe (1982).Google Scholar
  8. 8.
    G. Müller, “Uber die Enstehung von Inhomogenitaten in Halbleiterkristallen bei der Herstellung aus Schmelzen,” Selisch Fachbuch-Verlag, Langensendelbach (1986) pp 151–165.Google Scholar
  9. 9.
    G. Müller, A comparative study of crystal growth phenomena under reduced and enhanced gravity, J. Crystal Growth 99:1242 (1990).CrossRefGoogle Scholar
  10. 10.
    W. Weber, G. Neumann, and G. Müller, Stabilizing influence of the Coriolis force during melt growth on a centrifuge, J. Crystal Growth 100:145 (1990).CrossRefGoogle Scholar
  11. 11.
    G. Müller, G. Neumann, and W. Weber, The growth of homogeneous semiconductor crystals in a centrifuge by the stabilizing influence of the Coriolis force, J. Crystal Growth 119:8 (1992).CrossRefGoogle Scholar
  12. 12.
    A. Chevy, P. Williams, M. Rodot, and G. Labrosse, Removal of convective instabilities in liquid metals by centrifugation, present volume.Google Scholar
  13. 13.
    B. Zhou, F. Cao, L. Lin, W. Ma, Y. Zheng, F. Tao, and M. Xue, Growth of GaAs at high gravity, present volume.Google Scholar
  14. 14.
    W.J. Ma, F. Tao, Y. Zheng, M.L. Xue, B.J. Zhou, and L.Y. Lin, Response of temperature oscillations in a tin melt to centrifugal effects, present volume.Google Scholar
  15. 15.
    F. Tao, Y. Zheng, W.J. Ma, and M.L. Xue, Unsteady thermal convection of melts in a 2-D horizontal boat in a centrifugal field with consideration of the Coriolis effect, present volume.Google Scholar
  16. 16.
    C.E. Chang, V.F.S. Yip, and W.R. Wilcox, Vertical gradient freeze growth of gallium arsenide and naphthalene: theory and practice, J. Crystal Growth 22:247 (1974).CrossRefGoogle Scholar
  17. 17.
    C.E. Chang and W.R. Wilcox, Control of interface shape in the vertical Bridgman-Stockbarger technique, J. Crystal Growth 21:135 (1974).CrossRefGoogle Scholar
  18. 18.
    S. Sen and W.R. Wilcox, Influence of crucible on interface shape, position and sensitivity in the vertical Bridgman-Stockbarger technique, J. Crystal Growth 28:36 (1975).CrossRefGoogle Scholar
  19. 19.
    T.W. Fu and W.R. Wilcox, Influence of insulation on stability of interface shape and position in the vertical Bridgman-Stockbarger technique, J. Crystal Growth 48:416 (1980).CrossRefGoogle Scholar
  20. 20.
    G.T. Neugebauer and W.R. Wilcox, Convection in the vertical Bridgman-Stockbarger technique, J. Crystal Growth 89:143 (1988).CrossRefGoogle Scholar
  21. 21.
    S. Motakef, Interference of buoyancy-induced convection with segregation during directional solidification: scaling laws, J. Crystal Growth 102:197 (1990).CrossRefGoogle Scholar
  22. 22.
    L.L. Regel et al., Effect of increased gravity on the structure of directionally solidified aluminum-copper eutectic, Fiz. Khim. Obrab. Mater 45 (1989).Google Scholar
  23. 23.
    L.L. Regel, A.M. Turchaninov, R.V. Parfeniev, I. Farbshtein, N.K. Shulga, S.V. Nikitin, and S.V. Yakimov, “Electrofizicheskie Svoictva Monokristallov Tellura i Splava Te1-xSex, Poluchennikh v Usloviyakh pri Vishennoi Gravitatsii (5 go i 10 go),” USSR Space Research Institute, Moscow (July 1989).Google Scholar
  24. 24.
    L.L. Regel, I.V. Videnskii, V.V. Zubenko, I.M. Cafonova, and I.V. Telegina, Vliyanie povishennoi gravitatsii na strukturu napravlenno — za kristallizovannik evtektik alyominii — medi, Fizika i Chimiya Obrabotki Materialov 23:45 (1989).Google Scholar
  25. 25.
    P. Bartsi, L.L. Regel, and I. Solyom, in: “Proceedings of the 4th Intercosmos Seminar on Cosmic Materials and Technologies,” Bucharest (1989) pp 117–137.Google Scholar
  26. 26.
    B.V. Burdin, L.L. Regel, A.M. Turchaninov, and O.V. Shumaev, The peculiarities of material crystallization experiments on the CF-18 centrifuge in high gravity, J. Crystal Growth 119:61 (1992).CrossRefGoogle Scholar
  27. 27.
    L.L. Regel and O.V. Shumaev, GaSb directional solidification in high gravity conditions, J. Crystal Growth 119:70 (1992).CrossRefGoogle Scholar
  28. 28.
    P. Barczy, J. Solyom, and L.L. Regel, Solidification AlNi(Cu) eutectics at high gravity, J. Crystal Growth 119:160 (1992).CrossRefGoogle Scholar
  29. 29.
    L.L. Regel et al., Te and Te-Se alloy crystal growth under higher gravity, J. Phys. France 2:373 (1992).CrossRefGoogle Scholar
  30. 30.
    Z. Chvoj and C. Barta, Remark on the influence of gravitation on the solidification of the binary systems, Czech. J. Phys. B 36:868 (1986).CrossRefGoogle Scholar
  31. 31.
    C. Barta, F. Fendrych, E. Krcova, and A. Triska, Directional solidification of complex-forming eutectic melt of the lead dichloride — silver chloride dielectric system under conditions of zero, normal and increased gravity, Adv. Space Res. 8:167 (1988). Also, in: “Proceedings of the 4th Intercosmos Seminar on Cosmic Materials and Technologies,” V. Lupei and D. Toma, eds., Rumanian Academy of Science, Bucharest (1989).CrossRefGoogle Scholar
  32. 32.
    W. Arnold, W.R. Wilcox, F. Carlson, A. Chait, and L.L. Regel, Transport modes during crystal growth in centrifuge, J. Crystal Growth 119:24 (1992).CrossRefGoogle Scholar
  33. 33.
    W.A. Arnold, W.R. Wilcox, F. Carlson, L.L. Regel, and A. Chait, Row mode transitions during crystal growth in a centrifuge, J. Crystal Growth (submitted).Google Scholar
  34. 34.
    W. Arnold, W. Wilcox, F. Carlson, A. Chait, and L. Regel, Crystal growth of semiconductor compounds in a centrifuge, in: “Proceedings of the Society of Engineering Science,” Gainesville (November 1991).Google Scholar
  35. 35.
    W. Arnold, “Numerical Modeling of Directional Solidification in a Centrifuge,” PhD Thesis, Clarkson University (1993).Google Scholar
  36. 36.
    W.A. Arnold and L.L. Regel, Thermal stability and the suppression of convection in a rotating fluid on earth, present volume.Google Scholar
  37. 37.
    M.A. Fikri, G. Labrosse, and M. Betrouni, The melt phase hydrodynamics for the “stabilized” Bridgman procedure applied under centrifugation; preliminary analysis and numerical results, J. Crystal Growth 119, 41–60 (1992).CrossRefGoogle Scholar
  38. 38.
    V.A. Urpin, Convective flows during crystal growth in a centrifuge, present volume.Google Scholar
  39. 39.
    P.A. Vorobiov, N.A. Baturin, and O.V. Shumaev, Laminar convection in the melt during crystal growth in a centrifuge, J. Crystal Growth 119:111 (1992).CrossRefGoogle Scholar
  40. 40.
    R. Derebail, W.R. Wilcox, and L.L. Regel, Directional solidification of InSb in a centrifuge, J. Crystal Growth 119:98 (1992).CrossRefGoogle Scholar
  41. 41.
    R. Derebail, W.R. Wilcox, and L.L. Regel, The influence of gravity on the directional solidification of indium antimonide, J. Spacecraft & Rockets 30:202 (1993).CrossRefGoogle Scholar
  42. 42.
    R. Derebail, “Study of Directional Solidification of InSb under Low, Normal and High Gravity,” M.S. Thesis, Clarkson University (1990).Google Scholar
  43. 43.
    R. Derebail, “Directional Solidification of InSb in the Centrifuge,” PhD Thesis, Clarkson University (1994).Google Scholar
  44. 44.
    L.I. Farbshtein, R.V. Parfeniev, S.V. Yakimov, L.L. Regel, R. Derebail, and W.R. Wilcox, Analysis of impurity distribution by galvanomagnetic method in InSb obtained under high gravity conditions, present volume.Google Scholar
  45. 45.
    L.I. Farbshtein, R.V. Parfeniev, N.K. Shulga, and L.L. Regel, Variation of effective impurity segregation coefficient in tellurium grown under high gravity, present volume.Google Scholar
  46. 46.
    R.N. Grugel, A.B. Hmelo, C.C. Battaile, and T.G. Wang, Microstructural development in Pb-Sn alloys subjected to high gravity during controlled directional solidification, present volume.Google Scholar
  47. 47.
    L.L. Regel, A.M. Turchaninov, O.V. Shumaev, I.N. Bandeira, C.Y. An, and P.H.O. Rappl, Growth of lead-tin telluride crystals in high gravity, J. Crystal Growth 119:94 (1992).CrossRefGoogle Scholar
  48. 48.
    Y.A. Chen, I.N. Bandeira, A.H. Franzan, S. Eleutério Filho, and M.R. Slomka, The influence of gravity on Pb1-xSnxTe crystals grown by the vertical Bridgman method, present volume.Google Scholar
  49. 49.
    A. Chevy, Cristallogenese du germanium en centrifugeuse, Compte Rendue Acad. Sci. Paris 307:1147 (1988).Google Scholar
  50. 50.
    A. Chevy, Private Communication, Universite Pierre et Marie Curie, Paris, France (1990).Google Scholar
  51. 51.
    T. Lee, J.C. Moosbrugger, F.M. Carlson, and DJ. Larson, Jr., The role of thermal stress in vertical Bridgman growth of CdZnTe crystals, present volume.Google Scholar
  52. 52.
    M.P. Volkov, B.T. Melekh, R.V. Parfeniev, N.F. Kartenko, and L.L. Regel, Properties of superconducting Bi-Sr-Ca-Cu-O system remelted under high gravity conditions, J. Crystal Growth 119:122 (1992).CrossRefGoogle Scholar
  53. 53.
    H. Wiedemeier, L.L. Regel, and W. Palosz, Vapor transport and crystal growth of GeSe under normal and high acceleration, J. Crystal Growth 119:79 (1992).CrossRefGoogle Scholar
  54. 54.
    J.C. Launay, S. Bouchet, A. Randriamampianina, P. Bontoux, and P. Gibart, Epitaxial growth on a GaAs hemisphere substrate at 1 g and under hypergravity, present volume.Google Scholar
  55. 55.
    J. Chen, J.M. Most, P. Joulain, and D. Durox, Fire behavior in macrogravity, present volume.Google Scholar
  56. 56.
    J. Domey, D.K. Aidun, G. Ahmadi, L.L. Regel, and W.R. Wilcox, Numerical simulation of the effect of gravity on weld pool shape, present volume.Google Scholar
  57. 57.
    T. Hibiya, S. Nakamura, K.W. Yi, and K. Kakimoto, Coriolis effect on heat transfer experiment using hot-wire technique on centrifuge, present volume.Google Scholar
  58. 58.
    K.O. Pedersen, Uber das Sedimentationsgleichgewicht von anorganischen Salzen in der Ultrazentrifuge, Z. Phys. Chem. A170:41 (1934).Google Scholar
  59. 59.
    D.J. Cox, Computer simulation of sedimentation in the ultracentrifuge. III. Concentration-dependent sedimentation, Arch. Biochem. Biophys. 119:230 (1967).CrossRefGoogle Scholar
  60. 60.
    W.R. Wilcox and P. Shlichta, Movement of crystal inclusions in a centrifugal field, J. Appl. Phys. 42:1823 (1971).CrossRefGoogle Scholar
  61. 61.
    W.R. Wilcox, Movement of liquid inclusions by centrifugation, J. Crystal Growth 13/14:787 (1972).CrossRefGoogle Scholar
  62. 62.
    T.R. Anthony and H.E. Cline, The kinetics of droplet migration in solids in an accelerational field, Phil Mag. 22:893 (1970).CrossRefGoogle Scholar
  63. 63.
    P.J. Shlichta, Crystal growth and materials processing above 1000 g, J. Crystal Growth 119:1 (1992).CrossRefGoogle Scholar
  64. 64.
    P.J. Shlichta and R.E. Knox, Growth of crystals by centrifugation, J. Crystal Growth 3/4:808 (1968).CrossRefGoogle Scholar
  65. 65.
    M.Y.D. Lanzerotti, J. Autera, J. Pinto, and J. Sharma, Crystal growth of energetic materials during high acceleration using an ultracentrifuge, present volume.Google Scholar
  66. 66.
    R.S. Sokolowski, “Gravitational influence on binary alloy melt equilibria and eutectic solidification,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (1981).Google Scholar
  67. 67.
    M.E. Glicksman and R.S. Sokolowski, Gravitational influence on binary alloy melt equilibria, Adv. Space Res. 3:129 (1983).CrossRefGoogle Scholar
  68. 68.
    R.S. Sokolowski and M.E. Glicksman, Gravitational influence on eutectic solidification, J. Crystal Growth 119:126 (1992).CrossRefGoogle Scholar
  69. 69.
    D.T. Hayhurst, PJ. Melling, W.J. Kim, and W. Bibbey, in: “Zeolite Synthesis,” M.L. Occelli and H.E. Robson, eds., American Chemical Society (1989) ch 17.Google Scholar
  70. 70.
    W J. Kim, “The Effect of Elevated Gravity on the Crystallization of the MFI Zeolites, ZSM-5 and Silicalite,” Ph.D. Thesis, Cleveland State University, Cleveland, Ohio (1989); through Chem. Abstr. 112:219459 (1990).Google Scholar
  71. 71.
    D.T. Hayhurst, W.J. Kim, and PJ. Melling, “Crystal Growth in Enhanced Gravitational field,” US Patent Application 233,287 (1988); PCT Int. Appl. WO 90 02,221 (1990); through Chem. Abstr. 113:32438 (1990).Google Scholar
  72. 72.
    V.A. Briskman, K.G. Kostarev, and T.P. Lyubimova, Gel polymerization at high gravity, present volume.Google Scholar
  73. 73.
    J. Garnier and L.M. Cottineau, Questions raised about material processing in a centrifuge: lessons derived from the LCPC’s experience, J. Crystal Growth 119:66 (1992).CrossRefGoogle Scholar
  74. 74.
    R. Derebail, W.A. Arnold, G.J. Rosen, W.R. Wilcox, and L.L. Regel, HIRB — the centrifuge facility at Clarkson, present volume.Google Scholar
  75. 75.
    M.J. Paulin, R. Phillips, J.I. Clark, R. Meaney, D. Millan, and K. Tuff, Establishment of the new C-CORE centrifuge center, present volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Liya L. Regel
    • 1
  • William R. Wilcox
    • 1
  1. 1.International Center for Gravity Materials Science and ApplicationsClarkson UniversityPotsdamUSA

Personalised recommendations