Advertisement

Kinetic Description of Heavy Ion Collisions with Non-Equilibrium Mean Fields

  • C. Fuchs
  • L. Sehn
  • H. H. Wolter
Part of the NATO ASI Series book series (NSSB, volume 335)

Abstract

The investigation of heavy ion collisions at energies of about 1 to 2 GeV/A bom- barding energy is largely motivated by the search for the equation of state of nuclear matter, i.e. for the properties of equilibrated nuclear matter at densities away from saturation at non-zero temperatures. In a heavy ion collision the equation of state enters via the mean field in the participant zone of the colliding nuclei. However, through most of the reaction the phase space is far from equilibrium. Thus to determine the equation of state in a heavy ion collision involves the problem of describing realistically the many body system in non-equilibrium situations. Then the same theory can be used to determine the equilibrium equation of state for the ground state.

Keywords

Green Function Nuclear Matter Collision Term Realistic Force Phase Space Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Danielewicz, Ann. Phys. 152 (1984) 239ADSCrossRefGoogle Scholar
  2. 2.
    W. Botermans, R. Malfliet, Phys. Rep. 198 (1990) 115ADSCrossRefGoogle Scholar
  3. 3.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160 (1988) 189ADSCrossRefGoogle Scholar
  4. 4.
    B. Blättel, V. Koch, W. Cassing, U. Mosel, Phys. Rev. C38 (1988) 1767ADSGoogle Scholar
  5. 5.
    C.M. Ko, Q. Li, Phys. Rev. C37 (1988) 2270ADSGoogle Scholar
  6. 6.
    T.L. Ainsworth, G.E. Brown, M. Prakash, H.H. Wolter, Proceedings Hirschegg 1987, ed. H. Feldmeier, Darmstadt 1987Google Scholar
  7. 7.
    A. Bohnet, et al., Nucl. Phys. A494 (1989) 349. J. Jaenicke, et al., Nucl. Phys. A536 (1992) 201ADSGoogle Scholar
  8. 8.
    H. Stöcker, W. Greiner, Phys. Rep. 137 (1986) 277ADSCrossRefGoogle Scholar
  9. 9.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16 (1986) 1Google Scholar
  10. 10.
    D.T. Khoa, et al., Nucl. Phys. A542 (1992) 671. R.K. Puri, Nucl. Phys. A, in printADSGoogle Scholar
  11. 11.
    C. Fuchs, L. Sehn, H.H. Wolter, Prog. Part. Nucl. Phys. 30 (1993) 247ADSCrossRefGoogle Scholar
  12. 12.
    C. Fuchs, L. Sehn, H.H. Wolter, Nucl. Phys. A545 (1992) 151cADSGoogle Scholar
  13. 13.
    C. Fuchs, L. Sehn, H.H. Wolter, Nucl. Phys., in printGoogle Scholar
  14. 14.
    J. Schwinger, J. Math. Phys. 2 (1961) 407MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    D. Kremp, M. Schlanges, T. Bornath, J. Stat. Phys. 41 (1985) 661MathSciNetADSCrossRefGoogle Scholar
  16. 1.
    L.V. Keldysh, Sov. Phys. JETR, 20 (1965) 1018MathSciNetGoogle Scholar
  17. 2.
    L.P. Kardanoff, G. Baym, Quantum Statistical Mechanics, Benjamin, N.Y. 1962Google Scholar
  18. 3.
    C.J. Horowitz, B.D. Serot, Nucl. Phys. A464 (1987) 613ADSGoogle Scholar
  19. 4.
    B. terHaar, R. Malfliet, Phys. Rep. 149 (1987) 207ADSCrossRefGoogle Scholar
  20. 5.
    L. Sehn, H.H. Wolter, Nucl. Phys. A519 (1990) 289cADSGoogle Scholar
  21. 6.
    J. Aichelin, A. Rosenbauer, Phys. Rev. Lett. 58 (1987) 1926ADSCrossRefGoogle Scholar
  22. 7.
    K. Weber, et al., Nucl. Phys. A539 (1992) 713ADSGoogle Scholar
  23. 8.
    J. Cugnon, et al., Nucl. Phys. A352 (1981) 505ADSGoogle Scholar
  24. 9.
    N. Othsuka, et al., Nucl. Phys. A465 (1987) 550. N. Othsuka et al., Nucl. Phys. A490 (1988) 715ADSGoogle Scholar
  25. 10.
    H. Elsenhans, et al., Nucl. Phys. A536 (1992) 750ADSGoogle Scholar
  26. 11.
    C. Grégoire, et al., Nucl. Phys. A465 (1987) 317ADSGoogle Scholar
  27. 12.
    C. Fuchs, H.H. Wolter, Nucl. Phys., submittedGoogle Scholar
  28. 13.
    D.T. Khoa, et al., Nucl. Phys. A548 (1992) 102ADSGoogle Scholar
  29. 14.
    B. Blättel, V. Koch, U. Mosel, Rep. Prog. Phys. 56 (1993) 1ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Fuchs
    • 1
  • L. Sehn
    • 1
    • 2
  • H. H. Wolter
    • 1
  1. 1.Universität MünchenGarchingGermany
  2. 2.University of NantesFrance

Personalised recommendations