Advertisement

Energy Dependence of Collective Flow of Neutrons and Charged Particles in 197AU + 197AU Collisions

  • Th. Blaich
  • Th. W. Elze
  • H. Emling
  • H. Freiesleben
  • K. Grimm
  • W. Henning
  • R. Holzmann
  • J. G. Keller
  • H. Klingler
  • J. V. Kratz
  • R. Kulessa
  • D. Lambrecht
  • S. Lange
  • Y. Leifels
  • E. Lubkiewicz
  • E. F. Moore
  • W. Prokopowicz
  • R. Schmidt
  • C. Schütter
  • H. Spies
  • K. Stelzer
  • J. Stroth
  • E. Wajda
  • W. Waluś
  • M. Zinser
  • E. Zude
  • FOPI-Collaboration
Part of the NATO ASI Series book series (NSSB, volume 335)

Abstract

Collective flow of nuclear matter is one important aspect of the research performed at heavy ion accelerator laboratories. The phenomenon was predicted on the basis of hydrodynamical calculations [1], and experimental evidence was first presented for the systems 93 Nb + 93 Nb and 197 Au + 197 Au in the projectile energy range between 150 and 1050 MeV/u [2]. The comparison to microscopic calculations shows that nuclear matter is compressed to about two to three times the ground state density and that a substantial fraction of the kinetic energy in the entrance channel is converted into compressional energy [3]. In these calculations, the relation between density and compressional energy depends on the parameterization of the nucleon-nucleon inter-action. The values of its parameters will hopefully be restricted by a comparison of the calculations to experimental data, and thus one can obtain information on the nucleon-nucleon interaction within the nuclear medium which is not accessible from other sources.

Keywords

Transverse Momentum Impact Parameter Reaction Plane Azimuthal Distribution Quantum Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Scheid et al., Phys Rev Lett 32, 741 (1974)ADSCrossRefGoogle Scholar
  2. H. Stöcker et al., Phys Rev C25, 1873 (1982)ADSGoogle Scholar
  3. [2]
    H.A. Gustafsson et al., Phys Rev Lett 52, 1590 (1984)ADSCrossRefGoogle Scholar
  4. [3]
    J. Aichelin, Phys Rep 202, 233 (1991)ADSCrossRefGoogle Scholar
  5. B. Blättel et al., Phys Rev C43, 2728 (1991)ADSGoogle Scholar
  6. [4]
    J. Schambach et al., in: The Nuclear Equation of State, Proceedings of a NATO Advanced Study Institute, Peniscola, 1989, Vol. 216B, edited by W. Greiner and H. Stöcker, part A, p.115Google Scholar
  7. [5]
    R. Madey et al., Proceedings of the International Nuclear Physics Conference, Wiesbaden 1992, Nucl Phys A553, 779c (1993)ADSGoogle Scholar
  8. [6]
    A. Gobbi et al., Nucl Instr Meth A324, 156 (1993)ADSGoogle Scholar
  9. [7]
    Th. Blaich et al., Nucl Instr Meth A314, 136 (1992)ADSGoogle Scholar
  10. [8]
    Y. Leifels et al., Phys Rev Lett 71, 963 (1993)ADSCrossRefGoogle Scholar
  11. [9]
    K.G.R. Doss et al., Phys Rev Lett 59, 2720 (1987)ADSCrossRefGoogle Scholar
  12. [10]
    H.H. Gutbrod et al., Phys Rev C42, 640 (1990)ADSGoogle Scholar
  13. [11]
    J. Aichelin and H. Stöcker, Phys Lett B176, 14 (1986)ADSGoogle Scholar
  14. [12]
    Ch. Hartnack, PhD thesis, University of Frankfurt, 1992Google Scholar
  15. [13]
    H.G. Ritter, Proceedings of this conferenceGoogle Scholar
  16. [14]
    A. Bonasera et al., Nucl Phys A476, 159 (1988) and references thereinADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Th. Blaich
    • 5
  • Th. W. Elze
    • 4
  • H. Emling
    • 3
  • H. Freiesleben
    • 1
  • K. Grimm
    • 4
  • W. Henning
    • 3
    • 7
  • R. Holzmann
    • 3
  • J. G. Keller
    • 1
  • H. Klingler
    • 4
  • J. V. Kratz
    • 5
  • R. Kulessa
    • 2
  • D. Lambrecht
    • 5
  • S. Lange
    • 1
  • Y. Leifels
    • 1
  • E. Lubkiewicz
    • 2
  • E. F. Moore
    • 3
    • 6
  • W. Prokopowicz
    • 2
  • R. Schmidt
    • 3
  • C. Schütter
    • 4
  • H. Spies
    • 4
  • K. Stelzer
    • 4
  • J. Stroth
    • 3
  • E. Wajda
    • 2
  • W. Waluś
    • 2
  • M. Zinser
    • 3
  • E. Zude
    • 3
  • FOPI-Collaboration
  1. 1.Institut für ExperimentalphysikRuhr-Universität BochumBochumGermany
  2. 2.Institute of PhysicsJagellonian UniversityCracowPoland
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany
  4. 4.Institut für KernphysikJohann-Wolfgang-Goethe-UniversitätFrankfurtGermany
  5. 5.Institut für KernchemieJohannes-Gutenberg-UniversitätMainzGermany
  6. 6.Dept. of PhysicsNorth Carolina State UniversityRaleighUSA
  7. 7.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations