Advertisement

Boltzmann-Langevin Transport Model for Heavy-Ion Collisions

  • Sakir Ayik
Part of the NATO ASI Series book series (NSSB, volume 335)

Abstract

Many aspects of heavy-ion collisions can be described by means of the one-body transport models. In these transport models, one deals with a reduced description in terms of the single-particle density, rather than the full many-body information. These models in semi-classical limit with a Boltzmann-Uehling-Uhlenbeck (BUU) form of a collision term has been very successful in describing a large variety of observables associated with heavy-ion collisions at intermediate energies1–2. The average description provided by the BUU model is well suited for processes involving small density fluctuations. However, for processes involving large density fluctuations, for example near instabilities and bifurcations, such an average description is inadequate. In these situations the stochastic transport models may provide a more appropriate basis for describing the dynamical evolution. In these stochastic approaches, the one-body transport models are improved beyond the mean-field approximation by incorporating the high order correlations in a statistical approximation, analogous to the treatment of the Brownian motion. The recently developed Boltzmann-Langevin (BL) model constitutes an example of such stochastic transport approaches,3–5 and it is therefore a promising model for describing catastrophic phenomena, such as phase transitions and nuclear multifragmentations.

Keywords

Momentum Distribution Quadrupole Moment Density Fluctuation Average Description Multipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.F. Bertsch and S. Das Gupta, Phys. Rep. 160: 190 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    W. Cassing and U. Mosel, Prog. Part. Nucl. Phys. 25: 235 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    S. Ayik and C. Gregoire, Phys. Lett. B212: 269 (1988); and Nucl. Phys. A513: 187 (1990).ADSGoogle Scholar
  4. 4.
    J. Randrup and B. Remaud, Nucl. Phys. A514: 339 (1990).ADSGoogle Scholar
  5. 5.
    P. G. Reinhard, E. Suraud and S. Ayik, Ann. Phys. 213: 204 (1992)ADSMATHCrossRefGoogle Scholar
  6. P. G. Reinhard and E. Suraud, preprint GANIL-P9107 (1991), Ann. Phys. (N.Y.) 216: 987 (1992).MathSciNetCrossRefGoogle Scholar
  7. 6.
    S. Nakajima, Prog. Theor. Phys. 20: 948 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 7.
    R.W. Zwanzig, “Quantum Statistical Mechanics, ” P.H.E. Meijer, ed., Gordon and Breach, New York, (1966).Google Scholar
  9. 8.
    H. Risken, “The Fokker-Planck Equation, ” Springer, Berlin, (1984).MATHCrossRefGoogle Scholar
  10. 9.
    M. Bixon and R. Zwanzig, Phys. Rev. 187: 267 (1969).MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    M. Colonna, Ph. Chomaz and J. Randrup, Nucl. Phys. A (1993) in pressGoogle Scholar
  12. J. Randrup, Interdisciplinary Workshop on Statistical Description of Transport in Plasma, Astro- and Nuclear Physics, Les Houchers, France (1992), Nova Science.Google Scholar
  13. 11.
    S. Ayik, E. Suraud, J. Stryjewski and M. Belkacem, Z. Phys. A337: 413 (1990)ADSGoogle Scholar
  14. S. Ayik and D. Boilley, Phys. Lett. B276: 263 (1992) and 286: 482E (1992); S. Ayik, submitted to Phys. Lett. (1993).ADSGoogle Scholar
  15. 12.
    Ph. Chomaz, G. F. Burgio and J. Randrup, Phys. Lett. B254: 340 (1991)ADSGoogle Scholar
  16. G.F. Burgio, Ph. Chomaz and J. Randrup, Nucl. Phys A529: 157 (1991)ADSGoogle Scholar
  17. F. Chapelle, et al., Nucl. Phys. A540: 227 (1992).ADSGoogle Scholar
  18. 13.
    E. Suraud, S. Ayik, J. Stryjewski and M. Belkacem, Nucl. Phys. A542: 141 (1992)ADSGoogle Scholar
  19. S. Ayik, E. Suraud, M. Belkacem and D. Boilley, Nucl. Phys. A545: 35c (1992)ADSGoogle Scholar
  20. E. Suraud, S. Ayik, M. Belkacem and F.-S. Zhang, preprint GANIL-P9316 and submitted to Nucl. Phys. A (1993).Google Scholar
  21. 14.
    C. Gregoire, B. Remaud, F. Sebille, L. Vinet and Y. Raffray, Nucl. Phys. A465: 317 (1987).ADSGoogle Scholar
  22. 15.
    F.-S. Zhang and E. Suraud, preprint YITP/K-1009 and submitted to Phys. Lett. B (1993).Google Scholar
  23. 16.
    D. R. Bowman, et al., Phys. Rev. Lett. 67: 1527 (1991).ADSCrossRefGoogle Scholar
  24. 17.
    C. A Ogilvie, et al., Phys. Rev. Lett. 67: 1214 (1991).ADSCrossRefGoogle Scholar
  25. 18.
    P. Danielewicz, Ann. Phys. 197: 154 (1990).ADSMATHCrossRefGoogle Scholar
  26. 19.
    M. Belkacem, E. Suraud and S. Ayik, Phys. Rev. C47: R16 (1993).ADSGoogle Scholar
  27. 20.
    W. Cassing, V. Mettag, U. Mosel and K. Niita, Phys. Rep. 188: 363 (1990).ADSCrossRefGoogle Scholar
  28. 21.
    J. Randrup and C. M. Ko, Nucl. Phys. A343: 519 (1980); and 411: 537 (1983).ADSGoogle Scholar
  29. 22.
    J. Randrup and S. Ayik, preprint LBL-34484, and submitted to Nucl. Phys. A (1993).Google Scholar
  30. 23.
    S. Ayik, Phys. Lett. B265: 47 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Sakir Ayik
    • 1
    • 2
  1. 1.Tennessee Technological UniversityCookevilleUSA
  2. 2.Joint Institute for Heavy-Ion ResearchOak RidgeUSA

Personalised recommendations