Skip to main content

Modelling of a Polypyrrole Modified Electrode

  • Chapter
Electrochemical Engineering and Energy

Abstract

Electrochemical polymerisation of organic compounds is a simple and attractive method for immobilizing an enzyme at an electrode surface. An approach that is both experimental and mathematical is presented to explain the behaviour of an electrode modified by entrapment of a glucose oxidase in a polypyrrole film. The model was based on the resolution of the differential mass balance equations involving non-linear homogeneous catalysis. Evaluation of various assumptions such as the variation of the mass transport features inside the film and the occurrence of heterogeneous catalysis, led to the conclusion that the enzyme was non — uniformly distributed throughout the electropolymerised film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Diaz, J.I. Castillo, J.A. Logan, and W.Y. Lee, Electrochemistry of conducting polypyrrole films, J. Electroanal. Chem., 129:115 (1981).

    Article  CAS  Google Scholar 

  2. S. Asavapiriyanont, G.K. Chandler, G.A. Gunawardena, and D. Pletcher, The electrodeposition of polypyrrole films from aqueous solutions, J. Electroanal. Chem, 177:229 (1984).

    Article  CAS  Google Scholar 

  3. E.M. Genies, G. Bidan, and A.F. Diaz, Spectroelectrochemical study of polypyrrole films, J. Electroanal. Chem., 149:101 (1983).

    Article  CAS  Google Scholar 

  4. G. Tourillon, and F. Garnier, Electrochemical doping of polythiophene in aqueous medium: electrical properties and stability, J. Electroanal. Chem., 161:407 (1984).

    Article  CAS  Google Scholar 

  5. J. Wang, S.P. Chen, and M.S. Lin, Use of different electropolymerisation conditions for controlling the size-exclusion selectivity of polyaniline, polypyrrole and polyphenol films, J. Electroanal. Chem., 273:231 (1989).

    Article  CAS  Google Scholar 

  6. A. Witkowski, M.S. Freund, and A. Brajter-Toth, Effect of electrode substrate on the morphology and selectivity of overoxidized polypyrrole films, Anal. Chem., 63:622 (1991).

    Article  CAS  Google Scholar 

  7. A. Witkowski, and A. Brajter-Toth, Overoxidized polypyrrole films: a model for the design of permselective electrodes, Anal Chem., 64:635 (1992).

    Article  CAS  Google Scholar 

  8. N.C. Foulds, and C.R. Lowe, Enzyme entrapment in electrically conducting polymers: Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors, J. Chem. Soc., Faraday Trans. 1, 82:1259 (1986).

    Google Scholar 

  9. T. Tatsuma, M. Gondaira, and T. Watanabe, Peroxidase-incorporated polypyrrole membrane electrodes, Anal. Chem., 64:1183 (1992).

    Article  CAS  Google Scholar 

  10. S. Cosnier, and C. Innocent, A novel biosensor elaboration by electropolymerisation of an adsorbed amphiphilic pyrrole-tyrosinase enzyme layer, J. Electroanal. Chem., 328:361 (1992).

    Article  CAS  Google Scholar 

  11. J.K. Leypoldt, and D.A. Gough, Model of a two-substrate enzyme electrode for glucose, Anal. Chem., 56:2896(1984).

    Article  CAS  Google Scholar 

  12. J.Y. Lucisano, and D.A. Gough, Transient response of the two-dimensional glucose sensor, Anal. Chem., 60:1272(1988).

    Article  CAS  Google Scholar 

  13. P.N. Bartlett, and R.G. Whitaker, Electrochemical immobilisation of enzymes; part I. theory, J. Electroanal. Chem., 224:27 (1987).

    Article  CAS  Google Scholar 

  14. P.N. Bartlett, and R.G. Whitaker, Electrochemical immobilisation of enzymes; part II. glucose oxidase immobilised in poly-N-methylpyrrole, J. Electroanal. Chem., 224:37 (1987).

    Article  CAS  Google Scholar 

  15. S. Holdcroft, and B.L. Funt, Preparation and electrocatalytic properties of conducting films of polypyrrole containing platinum microparticulates, J. Electroanal. Chem., 240:89 (1988).

    Article  CAS  Google Scholar 

  16. R.C. Weast, Handbook of Chemistry and Physics, 68th ed, CRC Press Inc., Boca Raton (1987).

    Google Scholar 

  17. T.E. Barman, Enzyme Handbook, Springer-Verlag, New York (1969).

    Google Scholar 

  18. A.J. Bard, and L.R. Faulkner, Electrochimie, Principes, Méthodes et Applications, Masson, Paris (1983).

    Google Scholar 

  19. D.A. Gough, and J.K. Leypoldt, Membrane-covered, rotated disc electrode, Anal. Chem., 51:439 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gros, P., Bergel, A., Comtat, M. (1995). Modelling of a Polypyrrole Modified Electrode. In: Lapicque, F., Storck, A., Wragg, A.A. (eds) Electrochemical Engineering and Energy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2514-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2514-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6070-4

  • Online ISBN: 978-1-4615-2514-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics