Advertisement

Aspects of the Electrosynthesis of 2-Hydroxymethylpyridine

  • A. M. Romulus
  • A. Savall

Abstract

The electrochemical reduction of 2-ethylpicolinate (A) in a sulfuric acid medium was studied on a lead cathode during electrolyses in a laboratory filter press reactor under galvanostatic conditions. The yield of the conversion of (A) to the corresponding 2-formylpyridine (B), 2-hydroxymethylpyridine (C) and picoline (D) was investigated as a function of the medium acidity, current density, concentration of (A) and temperature.

A reaction model including the three electrochemical steps: A → B → C → D is presented. The variations of the charge transfer constants are considered as functions of the reactant conversion and mass transport resistance is integrated. The simulation gives a reasonable description of the behaviour of this complex electrochemical process.

Keywords

Storage Tank Electrochemical Reduction Pyridine Derivative Sulfuric Acid Concentration Picolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Eberson, J.H.P. Utley, Carboxylic acids and derivatives, in: “Organic Electrochemistry,” M. Baizer ed., M. Dekker Inc., New york (1983).Google Scholar
  2. 2.
    H. Lund, Electroörganic preparations, XI. Reduction of isonicotinic acid in acid solution, Acta Chem. Scand. 17:972 (1963).CrossRefGoogle Scholar
  3. 3.
    M. Ferles, M. Prystas, Untersuchungen in der pyridinreihe, VI. Betrag zur elektrolytischen reduktion der pyridincarbonsäuren, Collection Czechoslov. Chem. Commun. 24:3326 (1959).Google Scholar
  4. 4.
    T. Nonaka, T. Kato, T. Fuchigami, T. Sekine, Electroreduction of substituents on a pyridine ring in aqueous sulfuric acid, Electrochim. Acta, 26:887 (1980).CrossRefGoogle Scholar
  5. 5.
    A.M. Romulus, Electrosynthèse d’hydroxyméthylpyridines à partir des esters correspondants, Thèse de l’Université Paul Sabatier, Toulouse, 1993.Google Scholar
  6. 6.
    A.M. Romulus, A. Savall, Electrochemical reduction of ethyl-2-picolinate on lead in a sulfuric acid medium, Electrochim. Acta, 37:625 (1992).CrossRefGoogle Scholar
  7. 7.
    K. Scott, Reactor engineering models of complex electrochemical reaction schemes — I. Potentiostatic operation of parallel and series reactions in ideal reactors, Electrochim. Acta, 30:235 (1985).CrossRefGoogle Scholar
  8. 8.
    K. Scott, I.F. McConvey, A.N. Haines, Reactor analysis of series and parallel electrochemical reactions during galvanostatic operation, J. Appl. Electrochem. 17:925 (1987).CrossRefGoogle Scholar
  9. 9.
    A. Savall, J. Quesado, M. Rignon, J. Malafosse, Amino-alcohol electrosynthesis. Modelling of a set-up for producing amino-2-methyl-2-propanediol-1.3, J. Appl. Electrochem. 21:805 (1991).CrossRefGoogle Scholar
  10. 10.
    K. Scott, Reactor engineering models of complex electrochemical reaction schemes — II. The effect of chemical reaction during batch electrolysis, Electrochim. Acta, 30:245 (1985).CrossRefGoogle Scholar
  11. 11.
    E. Laviron, Polarographie et études physicochimiques des dérivés carbonylés et halogénés de la pyridine et de bases hétérocycliques, Thèse d’Etat, Dijon (1961).Google Scholar
  12. 12.
    J.P. Nougier, “Méthodes de calcul numérique,” 2ème édition, Masson, Paris (1985).Google Scholar
  13. 13.
    J.M. Coulson, J.F. Richardson, “Chemical Engineering,” Volume 6, Chapter 8, Pergamon, Oxford (1986).Google Scholar
  14. 14.
    R. C. Weast, “Handbook of Chemistry and Physics,” 68th Edition, CRC. Press, Boca Raton (1987).Google Scholar
  15. 15.
    L. Carlsson, B. Sandegren and D. Simonsson, Design and performance of a modular, multi-purpose electrochemical reactor, J. Electrochem. Soc. 130:342 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. M. Romulus
    • 1
  • A. Savall
    • 1
  1. 1.Laboratoire de Génie Chimique et Electrochimie, URA 192 CNRSUniversité Paul SabatierToulouse cedexFrance

Personalised recommendations