Skip to main content

A Possible Mechanism by Which Dietary Fat Can Alter Tumorigenesis: Lipid Modulation of Macrophage Function

  • Chapter
Diet and Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 364))

Abstract

Numerous expiremental and epidemiological studies hace provided evidence linking dietary fat with increased risk for breast cancer. Some epidemiological studies have reported a positive correlation between breast cancer and dietary fat intake1 while a few have reported that no correlation existed.2–5 In contrast, studies with animal models of mammary tumorigenesis are more consistent. In general, the studies in rodents showed that high levels of dietary fat to an increased incidence of spontaneous or carcinogen-induced breast tumors as compared to animals fed a moderate or low level of dietary fat.6 In addition, rodents fed saturated fats.7–8 Not only has dietary fat been linked to altered primary tumor growth, but it also appears to influence the process of metastasis.9 Since linoleic acid (18:2n-6) was the most abundant fatty acid found in many of the polyunsaturated vegetable oils numerous investigators hae suggested that it may be pivotal in the promotion of mammary tumorigenesis. The role of linoleic acid in increasing carcinogen-induced mammary tumor incidence10 as well as metastasis11 has been previously demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prentice, R.L., Dietary fat reduction as a hypothesis for the prevention of postmenopausal breast cancer, and a discussion of hypothesis testing research strategies, in: Diet and Breast Cancer, E.K. Weisburger, ed., Plenum Press, New York (1994).

    Google Scholar 

  2. Willett, W.C., D.J. Hunter, M.J. Stampfer, G. Colditz, J.E. Manson, D. Spiegelman, B. Rosner, C.H. Hennekens, and R.E. Speizer, Dietary fat and fiber in relation to risk of breast cancer. An 8-year follow-up, JAMA 268:2037 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. Harris, J.R., M.E. Lippman, U. Veronesi, and W. Willett, Breast cancer (1), N. Engl. J. Med. 327:319 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. Harris, J.R., M.E. Lippman, U. Veronesi, and W. Willett, Breast cancer (2), N. Engl. J. Med. 327:390(1992).

    Article  PubMed  CAS  Google Scholar 

  5. Harris, J.R., M.E. Lippman, U. Veronesi, and W. Willett, Breast cancer (3), N. Engl. J. Med. 327:473 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Welsch, C.W., Enhancement of mammary tumorigenesis by dietary fat: review of potential mechanisms, Am. J. Clin. Nutr. 45:192 (1987).

    PubMed  CAS  Google Scholar 

  7. Carroll, K.K. and G.J. Hopkins, Dietary polyunsaturated fat versus saturated fat in relation to mammary carcinogenesis, Lipids 14:155 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. Hillyard, L.A. and S. Abraham, Effect of dietary polyunsaturated fatty acids on growth of mammary adenocarcinomas in mice and rats, Cancer Res. 39:4430 (1979).

    PubMed  CAS  Google Scholar 

  9. Erickson, K.L. and N.E. Hubbard, Dietary fat and tumor metastasis, Nutr. Rev. 48:6 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. Ip, C, C.A. Carter, and M.M. Ip, Requirement of essential fatty acid for mammary tumori-genesis in the rat, Cancer Res. 45:1997 (1985).

    PubMed  CAS  Google Scholar 

  11. Hubbard, N.E. and K.L. Erickson, Enhancement of metastasis from a transplantable mouse mammary tumor by dietary linoleic acid, Cancer Res. 47:6171 (1987).

    PubMed  CAS  Google Scholar 

  12. Erickson, K.L. and I.K. Thomas, Susceptibility of mammary tumor cells to complement-mediated cytolysis after in vitro orin vivo fatty acid manipulation, J. Natl. Cancer Inst. 75:333 (1985).

    PubMed  CAS  Google Scholar 

  13. Erickson, K.L. and L.A. Schumacher, Lack of an influence of dietary fat on murine natural killer cell activity,J. Nutr. 119:1311 (1989).

    PubMed  CAS  Google Scholar 

  14. Lokesh, B.R., H.L. Hsieh, and J.E. Kinsella, Peritoneal macrophages from mice fed dietary (n-3) polyunsaturated fatty acids secrete low levels of prostaglandins, J. Nutr. 116:2547 (1986).

    PubMed  CAS  Google Scholar 

  15. Lokesh, B.R., J.M. Black, J.B. German, and J.E. Kinsella, Docosahexaenoic acid and other dietary polyunsaturated fatty acids suppress leukotriene synthesis by mouse peritoneal macrophages, Lipids 23:968 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. Broughton, K.S., J. Whelan, I. Hardardottir, and J.E. Kinsella, Effect of increasing the di-etary (n-3) to (n-6) polyunsaturated fatty acid ratio on murine liver and peritoneal cell fatty acids and eicosanoid formation, J. Nutr. 121:155 (1991).

    PubMed  CAS  Google Scholar 

  17. Chapkin, R.S., S.D. Somers, and K.L. Erickson, Dietary manipulation of macrophage phos-pholipid classes: selective increase of dihomogammalinolenic acid, Lipids 23:766 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. Chapkin, R.S., N.E. Hubbard, D.K. Buckman, and K.L. Erickson, Linoleic acid metabolism in metastatic and nonmetastatic murine mammary tumor cells, Cancer Res. 49:4724 (1989).

    PubMed  CAS  Google Scholar 

  19. Brenner, R.R., H. Garda, H. DeGremes, I. Dumm, and H. Pezzano, Early effects of EFA deficiency on the structure and enzymatic activity of rat liver microsomes, Prog. Lipid Res. 20:315 (1982).

    Article  Google Scholar 

  20. DeSchrijuer, R. and O.S. Privett, Effects of dietary long chain fatty acids on the biosynthesis of unsaturated fatty acids in the rat, J. Nutr. 112:619 (1982).

    Google Scholar 

  21. Adams, O., G. Wolfram, and N. Zollner, Prostaglandin formation in man during intake of different amounts of linoleic acids in diets, Ann. Nutr. Metab. 26:315 (1982).

    Article  Google Scholar 

  22. Dupont, J., Essential fatty acids and prostaglandins, Prev. Med. 16:485 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. Lands, W.E.M., Renewed questions about polyunsaturated fatty acids, Nutr. Rev. 44:189 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. Lokesh, B.R., J.M. Black, and J.E. Kinsella, The suppression of eicosanoid synthesis by peritoneal macrophages is influenced by the ratio of dietary docosahexaenoic acid to linoleic acid, Lipids 24:589 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. Kuwae, T., P.C. Schmid, S.B. Johnson, and H.H.O. Schmid, Differential turnover of phos-pholipid acyl groups in mouse peritoneal macrophages, J. Biol. Chem. 265:5002 (1990).

    PubMed  CAS  Google Scholar 

  26. Hibbs, J.B., H.A. Chapman, and J.B. Weinberg, The macrophage as an antineoplastic sur-veillance cell: biological perspectives, J. Reticuloendothel Soc. 24:549 (1978).

    PubMed  CAS  Google Scholar 

  27. Cleveland, R.P., M.S. Meltzer, and B. Zbar, Tumor cytotoxicity in vitro by macrophages from mice infected with Mycobacterium bovis strain BCG, J. Natl. Cancer Inst. 52:1887 (1974).

    PubMed  CAS  Google Scholar 

  28. Adams, D.O. and T.J. Koerner, Gene regulation in macrophage development and activation, Year. Immunol. 4:159(1989).

    PubMed  CAS  Google Scholar 

  29. Pace, J.L., S.W. Russell, B.A. Torres, H.M. Johnson, and P.W. Gray, Recombinant mouse γ interferon induces the priming step in macrophage activation for tumor cell killing, J. Immunol. 130:2011 (1983).

    PubMed  CAS  Google Scholar 

  30. Schreiber, R.D., J.L. Pace, S.W. Russell, A. Altaian, and D.H. Katz, Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon, J. Immunol. 131:826 (1983).

    PubMed  CAS  Google Scholar 

  31. Becton, D.L., D.O. Adams, and T.A. Hamilton, Characterization of protein kinase C activity in interferon gamma treated murine peritoneal macrophages, J. Cell. Physiol. 125:485 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. Adams, D.O. and T.A. Hamilton, The cell biology of macrophage activation, Annu. Rev. Immunol. 2:283 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. Nathan, C.F., Secretory products in cytotoxicity, in: Biological Response Mediators and Modulators, J.T. August, ed., Academic Press, New York (1983).

    Google Scholar 

  34. Marino, P.A. and D.O. Adams, Interaction of Bacillus Calmette—Guerin-activated macro-phages and neoplastic cells in vitro. I. Conditions of binding and its selectivity, Cell. Immunol. 54:11 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. Adams, D.O., Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors, J. Immunol. 124:286 (1980).

    PubMed  CAS  Google Scholar 

  36. Adams, D.O., K.J. Kao, R. Farb, and S.V. Pizzo, Effector mechanisms of cytolytically acti-vated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases, J. Immunol. 124:293 (1980).

    PubMed  CAS  Google Scholar 

  37. Hubbard, N.E., D. Lim, S.D. Somers, and K.L. Erickson, Effects of in vitro exposure to arachidonic acid on TNF-α production by murine peritoneal macrophages, J. Leukoc. Biol. 54:105 (1993).

    PubMed  CAS  Google Scholar 

  38. Somers, S.D. and K.L. Erickson, Alteration of tumor necrosis factor-cc production by macrophages from mice fed diets high in eicosapentaenoic and docosahexaenoic fatty acids, Cell. Immunol. 153:287 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Bang, H.O., J. Dyerberg, and N. Hjorne, The composition of food consumed by Greenland Eskimos, Acta. Med. Scand. 200:69 (1976).

    Article  PubMed  CAS  Google Scholar 

  40. Whitaker, M.O., A. Wyche, F. Fitzpatrick, H. Sprecher, and P. Needleman, Triene prosta-glandins: prostaglandin D3 and icosapentaenoic acid as potential antithrombotic substanc-es, Proc. Natl. Acad. Sci. USA 76:5919 (1979).

    Article  PubMed  CAS  Google Scholar 

  41. Dyerberg, J., H.O. Bang, E. Stoffersen, S. Moncada, and J.R. Vane, Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis?, Lancet ii:117 (1978).

    Article  Google Scholar 

  42. Kremer, J.M., J. Bigauoette, A.V. Michalek, M.A. Timchalk, L. Lininger, R.I. Rynes, C. Huyck, J. Zieminski, and L.E. Bartholomew, Effects of manipulation of dietary fatty acids on clinical manifestations of rheumatoid arthritis, Lancet i:184 (1985).

    Article  Google Scholar 

  43. Prickett, J.D., D.E. Trentham, and D.R. Robinson, Dietary fish oil augments the induction of arthritis in rats immunized with type II collagen, J. Immunol. 132:725 (1984).

    PubMed  CAS  Google Scholar 

  44. Leslie, C.A., W.A. Gonnerman, M.D. Ullman, K.C. Hayes, C Franzblau, and E.S. Cathcart, Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice, J. Exp. Med. 162:1336 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. Somers, S.D., R.S. Chapkin, and K.L. Erickson, Alteration of in vitro murine peritoneal macrophage function by dietary enrichment with eicosapentaenoic and docosahexaenoic acids in menhaden fish oil, Cell. Immunol. 123:201 (1989).

    Article  PubMed  CAS  Google Scholar 

  46. Hubbard, N.E., S.D. Somers, and K.L. Erickson, Effect of dietary fish oil on development and selected functions of murine inflammatory macrophages, J. Leukoc. Biol. 49:592 (1991).

    PubMed  CAS  Google Scholar 

  47. Carswell, E.A., L.J. Old, R.L. Kassel, S. Green, N. Fiore, and B. Williamson, An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA72:3666 (1975).

    Article  PubMed  CAS  Google Scholar 

  48. Tracey, K.J., B. Beutler, S.F. Lowry, J. Merryweather, S. Wolpe, I.W. Milsark, R.J. Hariri, TJ. Fahey III, A. Zentella, J.D. Albert, G.T. Shires, and A. Cerami, Shock and tissue injury induced by recombinant human cachectin, Science 234:470 (1986).

    Article  PubMed  CAS  Google Scholar 

  49. Tracey, K.J., H. Wei, K.R. Manogue, Y. Fong, D.G. Hesse, H.T. Nguyen, G.C. Kuo, B. Beutler, R.S. Cotran, and A. Cerami, Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation, J. Exp. Med. 167:1211 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. Beutler, B. and A. Cerami, Tumor necrosis, cachexia, shock, and inflammation: a common mediator, Annu. Rev. Biochem. 57:505 (1988).

    Article  PubMed  CAS  Google Scholar 

  51. Hardardottir, I. and J.E. Kinsella, Tumor necrosis factor production by murine resident peri-toneal macrophages is enhanced by dietary n-3 polyunsaturated fatty acids, Biochim. Biophys. Acta 1095:187 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. Vilcek, J. and T.H. Lee, Tumor necrosis factor, J. Biol. Chem. 266:7313 (1991).

    PubMed  CAS  Google Scholar 

  53. Endres, S., R. Ghorbani, V.E. Kelley, K. Georgilis, G. Lonnemann, J. Vandermeer, J.G. Cannon, T.S. Rogers, M.S. Klempner, P.C. Weber, E.J. Schaefer, S.M. Wolff, and C.A. Dinarello, The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells, N. Engl. J. Med. 320:265 (1989).

    Article  PubMed  CAS  Google Scholar 

  54. Kunkel, S.L., M. Spengler, G. Kwon, M.A. May, and D.G. Remick, Production and regula-tion of tumor necrosis factor alpha, Methods Achiev. Exp. Pathol. 13:240 (1988).

    PubMed  CAS  Google Scholar 

  55. Kunkel, S.L., M. Spengler, M.A. May, R. Spengler, J. Larrick, and D. Remick, Prostaglan-din E2 regulates macrophage-derived tumor necrosis factor gene expression, J. Biol. Chem. 263:5380 (1988).

    PubMed  CAS  Google Scholar 

  56. Braun, D.P., M.-C. Ahn, J.E. Harris, E. Chu, L. Casey, G. Wilbanks, and K.P. Siziopikou, Sensitivity of tumoricidal function in macrophages from different anatomical sites of cancer patients to modulation of arachidonic acid metabolism, Cancer Res. 53:3362 (1993).

    PubMed  CAS  Google Scholar 

  57. Prpic, V., J.E. Weiel, S.D. Somers, J. DiGuiseppi, S.L. Gonias, S.V. Pizzo, T.A. Hamilton, B. Herman, and D.O. Adams, Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5 biphosphate in murine peritoneal macrophages, J. Immunol. 139:526 (1987).

    PubMed  CAS  Google Scholar 

  58. Suk, K. and K.L. Erickson, Enhancement of BTG 1 gene expression by prostaglandin E2 in macrophages, Submitted for publication (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erickson, K.L., Hubbard, N.E. (1994). A Possible Mechanism by Which Dietary Fat Can Alter Tumorigenesis: Lipid Modulation of Macrophage Function. In: Weisburger, E.K. (eds) Diet and Breast Cancer. Advances in Experimental Medicine and Biology, vol 364. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2510-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2510-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6068-1

  • Online ISBN: 978-1-4615-2510-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics