Skip to main content

Classical frequency standards

  • Chapter
Frequency Measurement and Control

Abstract

We measure a quantity by comparing it with another quantity of the same nature, chosen as a standard. In previous chapters we described the methods available for frequency comparison in different spectral ranges, and also the applications of such measurements. In several instances (Sections 1.4 and 1.5), we gave simple information about oscillators that seemed stable enough to be used as standards. We shall now collect together these pieces of information and then specify the nature of the problems that have to be solved before we can build a system supplying stable frequency. We will raise this oscillator to the status of a standard by describing its oscillation in terms of a law as a rigorous as possible, which will define the nature of the standard. All other oscillators will then be described by more approximate laws established by the methods described previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Andronov, Vitt, A.A. and Khaikin, S.E. (1966) Theory of oscillators, Pergamon Press.

    Google Scholar 

  • Blaquiere, Nonlinear system analysis, Academic Press.

    Google Scholar 

  • Bogolioubov and Mitropolski (1962) Les méthodes asymptotiques en théorie des oscillations non linéarires, Gauthiers Villars.

    Google Scholar 

  • Chaleat, R. and Hagg, J. (1960) Problémes de Chronométrie et de théorie générale des oscillations, Gauthier Villars.

    Google Scholar 

  • Chua, L.O. (1969) Introduction to nonlinear network theory, McGraw Hill.

    Google Scholar 

  • Groszkiwsky, J. (1964) Frequency self oscillators, Pergamon.

    Google Scholar 

  • Haag, J. (1955) Les mouvements vibratoires, Presses Universitaires de France.

    Google Scholar 

  • Hassler, H. and Neyrinck, J. (1985) Circuits non linéaires, Presses Polytechniques Ro.

    Google Scholar 

  • Minorski, N. (1962) Nonlinear oscillations, Van Nostrand.

    Google Scholar 

  • Rocard, Y. (1952) Dynamique générale des vibrations, Masson.

    Google Scholar 

  • Stern. T.E. (1975) Theory of nonlinear networks and systems, Addison Wesley.

    Google Scholar 

  • Wilson, A.N. (1975) Nonlinear networks: theory and applications, IEEE Press.

    Google Scholar 

  • Besson, R. (1984) Recent evolution and new developmentgs of piezoelectric resonators, Proc. IEEE Ultrasonics Symposium, 367-377.

    Google Scholar 

  • Besson, R.J. Groslambert, J.M. and Walls, F.I. (1982) Quartz crystal resonators and oscillators recent developments and future trends, Ferro-electrics, 43, 57–65.

    Google Scholar 

  • Cady, W.G. (1964) Piezoelectricity, volumes 1 and, Dover Publications.

    Google Scholar 

  • Frerking, M.E. (1978) Crystal oscillator design and temperature compensation, Van Nostrand.

    Google Scholar 

  • Gagnepain, J.J. (1990) Resonators, detectors, and piezoelectrics, Advances in electronics and electron physics, 77, 83–137.

    Article  Google Scholar 

  • Gagnepain, J.J. and Besson, R. (1975) Nonlinear effects in piezoelectric quartz crystals, Physical Acoustics, XI, 245–288.

    Google Scholar 

  • Gerbier, E.A. and Ballato, A. (1985) Precision frequency control, 2, ‘Precision Oscillators’, Academic Press.

    Google Scholar 

  • Hafner, E. (1974) Crystal resonators, IEEE Transactions on Sonics and Ultrasonics, Vol. 21 (4), 220–237.

    Article  MathSciNet  Google Scholar 

  • Holland, R. and Eernisse, E.P. (1969) Design of resonant piezoelectric devices, MIT Press.

    Google Scholar 

  • Parzen, B. and Ballato A. (1983) Design of crystal and other harmonic oscillators, John Wiley.

    Google Scholar 

  • Guillon, P. (1988) Dielectric resonators, Artech House.

    Google Scholar 

  • Leblond, J. (1972) Les tubes hyperfréquences, Masson.

    Google Scholar 

  • Warnecke, R. and Guneard, P. (1953) Tubes à modulation de vitesse, Gauthier-Villard.

    Google Scholar 

  • Brendel, R. Olivier, M. and Marianneau, G. (1975) Analysis of the internal noise of quartz crystal oscillators, IEEE Trans. on Instr. and Meas. IM 24, 160–170.

    Article  Google Scholar 

  • Edson, W.A. (1960) Noise in oscillators, Proc. I.R.E. 48, 1454–1466.

    Article  Google Scholar 

  • Garstens. Noise in nonlinear oscillators, J. of Appl. Phys., 28, 352–356.

    Google Scholar 

  • Hafner, E. (1966) The effects of noise in oscillators, Proc. of the IEEE, 54, 179–198.

    Article  Google Scholar 

  • Parker, T.E. (1979) 1/f phase noise in quartz delay line and resonators. Proc. 24th Ann. Freq. Cont. Symp., 292-301.

    Google Scholar 

  • Berge, P. Pomeau, Y. and Vidal, C. (1984) Vordre dans le chaos, Hermann.

    Google Scholar 

  • Mira, C. (1987) Chaotic dynamics, World-Scientific.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chronos Group, French National Observatory, and National Centre of Scientific Research. (1994). Classical frequency standards. In: Frequency Measurement and Control. Microwave Technology Series, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2502-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2502-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6065-0

  • Online ISBN: 978-1-4615-2502-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics