Skip to main content

Experimental results and their interpretation

  • Chapter
  • 137 Accesses

Part of the book series: Microwave Technology Series ((MRFT,volume 7))

Abstract

The methods detailed in Chapter 2 give the mean frequency f 0 = ω0/2π of an oscillator and the spectral densities of phase and relative frequency fluctuations, S φ (F) and S y (F), which we will refer to as low-frequency spectra for short. The relation between these densities is

$${{S}_{y}}(F) = \frac{{4{{\pi }^{2}}{{F}^{2}}}}{{\omega _{0}^{2}}}{{S}_{\Phi }}(F)$$
(3.1)

where y = (1/2π)/(φ/f 0), the oscillator signal is given by

$$ \upsilon = V_0 \sin [\omega _0 t + \Phi (t)] $$
(3.2)

and amplitude fluctuations are assumed to be negligible. Figure 3.1 shows a few examples of the results obtained. The frequency axis has a logarithmic scale and the ordinates are plotted in dB/Hz since the spectral densities are normalised to the total power of the oscillator signal. The frequency spectrum is usually well described by a five-parameter model of the form

$${{S}_{y}}(F) = \frac{{{{h}_{{ - 2}}}}}{{{{F}^{2}}}} + \frac{{{{h}_{{ - 1}}}}}{F} + {{h}_{0}} + {{h}_{1}}F + {{h}_{2}}{{F}^{2}} + \ldots$$
(3.3)

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Benda, T. and Piersol, A. (1971) Random data: analysis and measurements procedures, J. Wiley.

    Google Scholar 

  • Blackman, R.B. and Tukey, J.M. (1959) The measurements of power spectra, Dover Publications.

    Google Scholar 

  • Papoulis, A. (1965) Probability, random variables, and stochastic processes, McGraw Hill.

    Google Scholar 

  • Robins, W.P. (1982) Phase noise in signal sources, Peter Peregrinus.

    Google Scholar 

  • Van der Ziel, A. (1970) Noise: sources, characterisation, measurement Prentice Hall.

    Google Scholar 

  • Vanossy, L. (1965) Theory and practice of the evaluation of measurements, Clarendon Press, Oxford.

    Google Scholar 

  • Allan, D.W. (1966) Statistics of atomic frequency standards, Proc. IEEE, 54, 221–230.

    Article  Google Scholar 

  • Allan, D.W. (1974) The measurements of frequency and frequency stability of precision oscillators, Proc. 6th.Ann. P.T.T.I. p. 109–142.

    Google Scholar 

  • Allan, D.W. and Barnes, J.A. (1971) A modified ‘Allan variance’ with increased oscillator characterization ability, Proc. 35th Ann. Freq. Cont. Symp., p. 470-473.

    Google Scholar 

  • Barnes, J.A. (1971) Characterisation of frequency stability, IEEE Trans. on Instru. and Meas. IM-20, p. 105–120.

    Article  Google Scholar 

  • Baugh, R.A. (1971) Frequency modulation analysis with the Hadamard variance, Proc. 25th. Ann. Freq. Cont. Symp. p. 222-225.

    Google Scholar 

  • Kartaschoff, P. (1977) Terms and methods to describe frequency stability, Tech. Mit. P.T.T.T. 51, 520–529.

    Google Scholar 

  • Lesage, P. and Audoin, C. (1973) Characterisation of frequency stability: uncertainty due to the finite number of measurements, IEEE Trans. on Instr. and Meas. IM-22, 157–161.

    Article  Google Scholar 

  • Lesage, P. and Audoin, C. (1979) Effect of dead time on the estimation of the two sample variance, IEEE Trans on Instr. and Meas. IM-28, 6–10.

    Article  Google Scholar 

  • Rutman, J. (1978) Characterisation of phase and frequency instabilities on precision frequency sources: fifteen years of progress, Proc. IEEE, 66, 1048–1075.

    Article  Google Scholar 

  • Barnes, J.A. and Allan, D.W. (1966) A statistical model of flicker noise, Proc. IEEE 43, 176–178.

    Article  Google Scholar 

  • Gagnepain, J.J. (1983) Phase and frequency noises in oscillators, proc. 7th. Int. Conf. on noise in physical systems, Montpellier, 309-317.

    Google Scholar 

  • Gagnepain, J.J. (1988) 1/f noise in oscillators. Theoretical and experimental progress, 4th Symp. on Frequency standards and Metrology, Ancona, Italy.

    Google Scholar 

  • Halford, D.D. (1968) A general mechanical model for f a spectral density noise with special reference to flicker noise 1/f, Proc. IEEE, 56, 3, 251–258.

    Article  Google Scholar 

  • Leeson, D.B. (1966) A simple model of feedback oscillator noise spectrum, Proc. IEEE, 54, 329–330. Rutman, J. and Uebersfeld. J. (1972) A model for flicker frequency noise of oscillators, Proc. IEEE, 60, 2, 233-235.

    Article  Google Scholar 

  • Groslambert, J. Gagnepain, J.J. Vernotte, F. and Walls, F.I. (1989) A new filtered Allan variance and its application to the identification of phase and frequency noise sources, Proc. 43rd Ann. Freq. Cont. Symp. p. 326-330.

    Google Scholar 

  • Pierrejean, D. (1987) Caractérisation de la pureté spectrale et de la stabilité des oscillateurs par une méthode de corrélation, L’Onde Electrique, 67, 3.

    Google Scholar 

  • Vernotte, F. Groslambert, J. and Gagnepain, J.J. (1990) Mesure du bruit des oscillateurs par une méthode de variances multiples, Congrés de Chronometrie, Stuttgart, 135-142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chronos Group, French National Observatory, and National Centre of Scientific Research. (1994). Experimental results and their interpretation. In: Frequency Measurement and Control. Microwave Technology Series, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2502-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2502-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6065-0

  • Online ISBN: 978-1-4615-2502-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics