Skip to main content

Euler Functions Eα(z) with Complex α and Applications

  • Chapter
Book cover Approximation, Probability, and Related Fields

Abstract

The aim of this paper is to extend the Euler polynomials E n (x), which may be defined in terms of their exponential generating function via

$$ \frac{{2{e^{xw}}}}{{{e^w} + 1}} = \sum\limits_{n = 0}^\infty {\frac{{{E_n}\left( x \right)}}{{n!}}} {w^n}{\text{ }}\left( {x \in \mathbb{R};\left| w \right| < \pi } \right), $$
(1)

to Euler functions E α(z) with complex indices α ∈ C; z will also be allowed to belong to C (see e.g. [26]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and LA. Stegun. “Handbook of Mathematical Functions,” Dover Publications, Inc., New York 1964.

    MATH  Google Scholar 

  2. T.M. Apostol. “Introduction to Analytic Number Theory,” Springer-Verlag, New York 1976.

    MATH  Google Scholar 

  3. B.C. Berndt. “Ramanujan’s Notebooks, Part I,” Springer-Verlag, New York 1985.

    Book  MATH  Google Scholar 

  4. P. Böhmer, Über die Bernoullischen Funktionen. Math. Ann. 68 (1910), 338–360.

    Article  MathSciNet  MATH  Google Scholar 

  5. P.L. Butzer, H. Dyckhoff, E. Görlich and R.L. Stens, Best trigonometric approximation, fractional order derivatives and Lipschitz classes. Canad. J. Math. 29 (1977), 781–793.

    Article  MathSciNet  MATH  Google Scholar 

  6. P.L. Butzer, M. Hauss and M. Leclerc, Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (1992), No. 6, 83–88.

    Article  MathSciNet  Google Scholar 

  7. P.L. Butzer and M. Hauss Integral and rapidly converging series representations of the Dirichlet L-functions L 1s and L-4s. Atti Sem. Mat. Fis. Univ. Modena XL (1992), 329–35

    Google Scholar 

  8. P.L. Butzer and M. Hauss, Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5, No. 2 (1992), 83–88.

    Article  MathSciNet  Google Scholar 

  9. P.L. Butzer and R.J. Nessel. “Fourier Analysis and Approximation; Vol. I,” Birkhäuser Verlag, Basel; Academic Press, New York 1971.

    Book  Google Scholar 

  10. P.L. Butzer, M. Schmidt and E.L. Stark, Observations on the history of central B-splines. Arch. Hist. Exact Sci. 39 (1988), 137–156.

    MathSciNet  MATH  Google Scholar 

  11. P.L. Butzer and U. Westphal, An access to fractional differentiation via fractional difference quotients, in: Fractional Calculus and its Applications [Lecture Notes in Mathematics, No. 457]. Springer-Verlag, Berlin 1975, 116–145.

    Chapter  Google Scholar 

  12. L. Comtet. “Advanced Combinatorics,” D. Reidel Publishing Company, Dordrecht 1974 (Revised Edition).

    Book  MATH  Google Scholar 

  13. K. Dilcher, L. Skula and I.Sh. Slavutskiî. “Bernoulli Numbers: Bibliography (1713-1990),” Queen’s Papers in Pure and Appl. Math., No. 87, Queen’s University, Kingston 1991.

    Google Scholar 

  14. V.K. Dzyadyk, Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotonic functions (Russ.). Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 933–950.

    MathSciNet  MATH  Google Scholar 

  15. J. Favard, Sur les meilleurs proc= éd= és d’approximation de certaines classes de functions par des polynomes trigonomètriques. Bull. Sci. Math. Ser. 2 61 (1937), 209–224.

    Google Scholar 

  16. I.S. Gradstein and I.M. Ryshik. “Tables of Series, Products, and Integrals; Vol. 1,” Verlag Harri Deutsch, Thun 1981.

    Google Scholar 

  17. E.R. Hansen. “A Table of Series and Products,” Prentice-Hall, Englewood Cliffs, N.J. 1975.

    MATH  Google Scholar 

  18. G.H. Hardy and W.W. Rogosinski. “Fourier Series,” Cambridge University Press, Cambridge 1962 (1. Edition 1944).

    Google Scholar 

  19. A. Jonquière, Über eine Verallgemeinerung der Bernoulli’schen Functionen und ihren Zusammenhang mit der verallgemeinerten Riemann’schen Reihe. Stockh. Akad. Bihang. XVI. I. 6., 1–28 (see Jahrbuch über d. Fortschr. Math. 23 (1891), p. 432).

    Google Scholar 

  20. N.P. Korneichuk. “Exact Constants in Approximation Theory,” Cambridge University Press, Cambridge 1991.

    MATH  Google Scholar 

  21. M. Leclerc, Fraktionierte Bernoulli und Euler Polynome. Diplomarbeit, Lehrstuhl A für Mathematik, RWTH Aachen (in preparation).

    Google Scholar 

  22. P. Lichtenbaum, Über die Funktion . Math. Z. 33 (1931), 641–647.

    Article  MathSciNet  Google Scholar 

  23. W. Magnus, F. Oberhettinger and R.P. Soni, “Formulas and Theorems for the Special Functions of Mathematical Physics,” Springer-Verlag, Berlin 1966.

    MATH  Google Scholar 

  24. W. Magnus, F. Oberhettinger and F.G. Tricomi. “Higher Transcendental Functions, Vol. I,” McGraw-Hill, New York 1953.

    MATH  Google Scholar 

  25. A.I. Markushevich. “Theory of Functions of a Complex Variable, Vol. I,” Prentice-Hall, Englewood Cliffs, N.J. 1965 (Revised English Edition).

    Google Scholar 

  26. N.E. Nörlund. “Vorlesung über Differenzenrechnung,” Chelsea Publishing Company, New York 1954.

    Google Scholar 

  27. D.M. Sinocov, Bernoulli functions with arbitrary indices. Kasan Soc. (2), 1 (1891), 234–256 (Russ.) (see Jahrbuch über d. Fortschr. Math. 24 (1892), p. 404).

    Google Scholar 

  28. H.M. Srivastava and H.L. Manocha. “A Treatise on Generating Functions,” Cambridge University Press 1966.

    Google Scholar 

  29. Sun Yong-sheng, On the best approximation of periodic differentiable functions by trigonometric polynomials (Russ.). Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 67–92.

    MathSciNet  Google Scholar 

  30. A. Weil. “Number Theory: An Approach through History; From Hammurapi to Legendre,” Birkhäuser Verlag, Boston 1984.

    MATH  Google Scholar 

  31. E.T. Whittaker and G.N. Watson. “A Course of Modern Analysis,” Cambridge University Press 1952 (4. Edition).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Jacob Korevaar on the occasion of his 70th birthday, in friendship and esteem.

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Butzer, P.L., Flocke, S., Hauss, M. (1994). Euler Functions Eα(z) with Complex α and Applications. In: Anastassiou, G., Rachev, S.T. (eds) Approximation, Probability, and Related Fields. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2494-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2494-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6063-6

  • Online ISBN: 978-1-4615-2494-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics