Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 339))

  • 128 Accesses

Abstract

To exert its antitumor effects, leucovorin must ultimately become activated by conversion to CH2FH4.* Elevation of this reduced folate cofactor stabilizes the inhibitory ternary complex formed between the FU active metabolite, FdUMP and thymidylate synthase, resulting in suppression of DNA synthesis or repair.1–4 It has been demonstrated both in animal models5 and in humans6 that administration of leucovorin results in intratumor elevation of CH2FH4 and the closely related reduced folate, FH4. However, precisely when and where the metabolic activity causing this elevation occurs remains in question. Further, while enzyme activities have been reported7–9 that could sustain the interconversions shown below, the precise metabolic pathways used have not been defined.

This work was supported by Grant No. CH461 from the American Cancer Society, Grant No. CA22754 from the National Cancer Institute, and Grant No. RR-01070 from the National Institutes of Health, Division of Research Services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.V. Danenberg and K.D. Danenberg, Effect of 5, 10-methylene-tetrahydrofolate on the dissociation of 5-fluoro-2′-deoxy-uridylate from thymidylate synthetase: evidence for an ordered mechanism, Biochemistry, 17: 4018 (1978).

    Article  PubMed  CAS  Google Scholar 

  2. B. Ullman, M. Lee, and D.W. Martin, Jr, et al., Cytotoxicity of 5-fluoro-2′-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate, Proc. Natl. Acad. Sci., 75: 980 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. J.A. Houghton, C. Schmit, and P.J. Houghton, The effects of derivatives of folic acid on the fluorodeoxyuridylate thymidylate synthetase covalent complex in human colon xenografts, Eur. J. Can. Clin. Oncol., 18: 347 (1982).

    Article  CAS  Google Scholar 

  4. R.M. Evans, J.D. Laskin, and M.T. Hakala, Effect of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil, Cancer Res. 41: 3288 (1981).

    PubMed  CAS  Google Scholar 

  5. J.A. Houghton, L.G. William, and S.S. DeGraaf, et al., Relationship between dose rate of 6[RS]leucovorin administration, plasma concentrations of reduced folates, and pools of 5, 10-methy-lenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts, Cancer Res., 50: 3493 (1990).

    PubMed  CAS  Google Scholar 

  6. F. Trave, Y.M. Rustum, and N.J. Peterelli, Plasma and tumor tissue pharmacology of high-dose intravenous leucovorin calcium in combination with fluororouracil in patients with advanced colorectal carcinoma, J. Clin. Oncol., 6: 1184 (1988).

    PubMed  CAS  Google Scholar 

  7. S. Hopkins and L.V., 5, 10-methenyltetrahydrofolate synthetase. Purification and properties of the enzyme from rabbit liver, J. Biol. Chem., 259: 5618 (1984).

    PubMed  CAS  Google Scholar 

  8. RE. MacKenzie, Biogenesis and interconversion of substituted tetrahydrofolates, in: “Folates and Pterins”, R.L. Blakley and S.J. Benkovic, eds., Wiley-Interscience, New York (1984).

    Google Scholar 

  9. L.V. Schirch, Folates in serine and glycine metabolism, in: “Folates and Pterins”, RL. Blakley and S.J. Benkovic, eds., Wiley-Interscience, New York (1984).

    Google Scholar 

  10. B. Ullman, M. Lee, D.W. Martin, Jr., and D.V. Santi, Cytotoxicity of 5-fluoro-2′-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate, Proc. Natl Acad. Scl.U.S.A. 75: 980 (1978).

    Article  CAS  Google Scholar 

  11. R.M. Evans, J.D. Laskin, and M.T. Hakala, Effects of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil, Cancer Res. 41: 3288 (1981).

    PubMed  CAS  Google Scholar 

  12. E. Mini, T. Mazzei, M. Coronnello, L. Criscuoli, M. Gualtieri, P. Periti, and J.R. Bertino, Effects of 5-methyltetrahydrofolate on the activity of fluoropyrimydines against human leukemia (CCRF-CEM) cells, Biochem. Pharmac., 36: 2905 (1987).

    Article  CAS  Google Scholar 

  13. R.J. Mullin, B.R Keith, and D.S. Duch, Distribution and metabolism of calcium leucovorin in normal and tumor tissue, in: “The expanding role of folate and fluoropyrimidines in cancer chemotherapy”, Y. Rustum and J.J. McGuire, eds., Plenum Press, New York (1988).

    Google Scholar 

  14. R. Bertrand, R.E. Mackenzie, and J. Jolivet, Human liver methenyltetrahydrofolate synthetase: improved purification and increased affinity for folate polyglutmate substrates, Biochim. Biophys. Acta. 911: 154 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. R.G. Matthews, Methylenetetrahydrofolate reductase from pig liver, Methods Enzymol., 122: 372 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. F.M. Huennekens and K.G. Scrimgeor, N-10-formyltetrahydrofolic deacylase, Methods Enzymol., 6: 373 (1963).

    Article  CAS  Google Scholar 

  17. M.S. Bunni and D.G. Priest, Human red blood cell-mediated metabolism of leucovorin [(R,S)5-formyltetrahydrofolate], Arch. Biochem. Biophys., 286: 633 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. V.M. Whitehead, R. Pratt, A. Viallet, and B.A. Cooper, Intestinal conversion of folinic acid to 5-methyltetrahydrofolate in man, Br. J. Haematol, 22: 63 (1972).

    Article  PubMed  CAS  Google Scholar 

  19. J.A. Straw, D. Szapary, and W.T. Wynn, Pharmacokinetics of the diastereomers of leucovorin after intravenous and oral administration to normal subjects, Cancer Res., 44: 3114 (1984).

    PubMed  CAS  Google Scholar 

  20. R.L. Schilsky and M.J. Ratain, Clinical pharmacokinetics of high-dose leucovorin calcium after intravenous and oral administrations, J. Natl Cancer Inst., 82: 1411 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. A. Schalhorn, M. Kühl, and G. Stupp-Poutot, et al., Pharmacokinetics of reduced folates after short-term infusion of d,l-folinic acid, Cancer Chemother. Pharmacol., 25: 440 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. B.W. McGuire, L.L. Sia, and J.D. Haynes, et al., Absorption kinetics of orally administered leucovorin calcium, NCI Monogr. 5: 47 (1987).

    PubMed  Google Scholar 

  23. P.O. Greiner, J. Zittoun, and J. Marquet, et al., Pharmacokinetics of (-)-folinic acid after oral and intravenous administration of the racemate, Br. J. Clin. Pharmac., 28: 289 (1989).

    Article  CAS  Google Scholar 

  24. J.A. Houghton and L.G. William, et al., Comparison of the conversion of 5-formyltetrahydrofolate and 5-methyltetrahydrofolate to 5, 10-methylenetetrahydrofolates and tetrahydrofolates in human colon tumors, Can. Comm., 1: 167 (1989).

    CAS  Google Scholar 

  25. D.G. Priest and M.T. Doig, Tissue folate polyglutamate chainlength determination by electrophoresis as thymidylate synthase-fluorodeoxyuridylate ternary complexes, Methods Enzymol., 122: 313 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. D.G. Priest, J.C. Schmitz, M.A. Bunni, and R.K. Stuart, Pharmacokinetics of leucovorin metabolites in human plasma as a function of dose administered orally and intravenously, J. Natl. Can. Inst., 83: 1806 (1991).

    Article  CAS  Google Scholar 

  27. J.C. Schmitz, R.K. Stuart, J.C. Barredo, and D.G. Priest, Interconversion of folates in human plasma and red blood cells, Pro. Am. Asso. Can. Res., 33: 410 (1992).

    Google Scholar 

  28. K. Pinter, V.J. Davisson, and D.V. Santi, Cloning, sequencing, and expression of the Lactobacillus casei thymidylate synthase gene, DNA, 7: 235 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. R.B. Dunlap, N.G.L. Harding, and F.M. Huennekens, Thymidylate synthetase from aminopterin-resistant Lactobacillus casei Biochemistry 10: 88 (1971).

    CAS  Google Scholar 

  30. J.D. Hines, D.J. Adelstein, J.L. Spiess, P. Giroski, and S.G. Carter, Efficacy of highdose oral leucovorin and 5-fluorouracil in advanced colorectal carcinoma, Cancer, 63: 1022 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. L.R. Laufman, W.D. Brenckman, Jr., and K.A. Stydnicki, et al., Clinical experience with leucovorin and 5-fluorouracil, Cancer, 63: 103 (1989).

    Article  Google Scholar 

  32. E.M. Newman, S.A. Akman, and J.S. Harrison, et al., Pharmacokinetics and toxicity of continuous infusion (6S)-folinic acid and bolus 5-fluorouracil in patients with advanced cancer, Cancer Res., 52: 2408 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Priest, D.G., Schmitz, J.C., Walle, T. (1993). Leucovorin as a Prodrug. In: Rustum, Y.M. (eds) Novel Approaches to Selective Treatments of Human Solid Tumors. Advances in Experimental Medicine and Biology, vol 339. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2488-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2488-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6060-5

  • Online ISBN: 978-1-4615-2488-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics