Skip to main content

Biochemical Modulation of 5-Fluorouracil by Pala: Mechanism of Action

  • Chapter
Novel Approaches to Selective Treatments of Human Solid Tumors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 339))

Abstract

Selectivity is, of course, the key to all chemotherapy. However, selectivity is very difficult to achieve against cancer cells in vivo because the biochemical differences between cancer and normal cells are quantitative rather than qualitative. Consequently, anticancer agents have a narrow therapeutic index and, therefore, chemotherapy is frequently toxic to the patient as well as to the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.E. Schnipper, Clinical implications of tumor cell heterogeneity, New Engl J Med 314: 1423–1431 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. G.H. Heppner, and B.E. Miller, Therapeutic implications of tumor heterogeneity, Semin Oncol 16: 91–105 (1989).

    PubMed  CAS  Google Scholar 

  3. D.S. Martin, Purine and pyrimidine biochemistry, and some relevant clinical and preclinical cancer chemotherapy research, in Powis G, Prough RA (eds): Metabolism and Action of Anti-Cancer Drugs, London, Taylor and Francis, (1987), pp. 91–140.

    Google Scholar 

  4. D.S. Martin, Biochemical modulation: Perspectives and objectives, in Harrap K, Connors T (eds): New Avenues in Developmental Chemotherapy, London, Academic Press, (1987), pp 113–162.

    Google Scholar 

  5. D.S. Martin, R.L. Stolfi, R.C. Saywer, et al, Therapeutic utility of utilizing low doses of N-(phosphonacetyl)-L-aspartic acid in combination with 5-fluorouracil: A murine study with clinical relevance, Cancer Res 43: 2317–2321 (1983).

    PubMed  CAS  Google Scholar 

  6. E.S. Casper, K. Vale, L. J. Williams, et al, Phase I and clinical pharmacological evaluation of biochemical modulation of 5-fluorouracil with N-(phosphonacetyl)-L-aspartic acid, Cancer Res 43: 2324–2329, (1983).

    PubMed  CAS  Google Scholar 

  7. D.S. Martin, R.L. Stolfi, R. C. Sawyer, et al, The application of biochemical modulation with a therapeutically inactive modulating agent in clinical trials of cancer chemotherapy, Cancer Treat Rep 69: 421–423 (1985).

    PubMed  CAS  Google Scholar 

  8. B. Ardalan, G. Singh, and H. Silberman, A randomized phase I and II study of short-term infusion of high-dose fluorouracil with or without N-(phosphonacetyl)-L-asparatic acid in patients with advanced pancreatic and colorectal cancers, J. Clin Oncol 6: 1053–1058 (1988).

    PubMed  CAS  Google Scholar 

  9. P. J. O’Dwyer, A. R. Paul, J. Walczak, et al, Phase II study of biochemical modulation of fluorouracil by low-dose PALA in patients with colorectal cancer, J. Clin. Oncol 8: 1497–1503 (1990).

    PubMed  Google Scholar 

  10. S. Speigelman, R. Sawyer, R. Nayak, et al, Improving the anti-tumor activity of 5-fluorouracil by increasing its incorporation into RNA via metabolic modulation, Proc. Natl. Acad Sci USA 77: 4966 (1980).

    Article  Google Scholar 

  11. R.C. Sawyer, R.L. Stolfi, R. Nayak, et al, Mechanism of cytotoxicity in 5-fluorouracil chemotherapy of two murine solid tumors, in Tattersall MHN, Fox RM (eds): Nucleosides and Cancer Treatment, New York, NY, Academic Press, (1981), pp 308–338.

    Google Scholar 

  12. R. Heimer, and A.C. Sartorelli, RNA polymerase II transcripts as targets for 5-fluorouridine cytotoxicity: Antagonism of 5-fluorouridine actions by a-amanitin, Cancer Chemother Pharmacol 24: 80–86 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. D.A. Greenhalgh, and J. H. Parish, Effect of 5-fluorouracil combination therapy on RNA processing in human colonic carcinoma cells, Br J Cancer 61: 415–419 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. D. S. Wilkinson, and H. C. Pitot, Inhibition of ribosomal ribonucleic acid maturation in Novikoff hepatoma cells by 5-fluorouracil and 5-fluorouridine. J Biol Chem 248: 63–68 (1973).

    PubMed  CAS  Google Scholar 

  15. B. J. Dolnick, and J. J. Pink, Effects of 5-fluorouracil on dihydrofolate reductase dihydrofolate reductase mRNA from methotrexate-resistant KB cells, J Biol Chem 260: 3006–3014 (1985).

    PubMed  CAS  Google Scholar 

  16. S-L. Doong, and B.J. Dolnick, 5-Fluorouracil substition alters pre-mRNA splicing in vitro. J Biol Chem 263: 4467–4473 (1988).

    PubMed  CAS  Google Scholar 

  17. L. D. Nord, and D. S. Martin, Loss of murine tumor thymidine kinase activity in vivo following 5-fluorouracil (FUra) treatment by incorporation of FUra into RNA, Biochem Pharmacol 42: 2369–2375 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. D. W. Kufe, and E. M. Egan, Enhancement of 5-fluorouracil incorporation into human lymphoblast ribonucleic acid, Biochem Pharmacol 30: 129–133 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. D. W. Kufe, and P. P. Major, 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytoxicity, J Biol Chem 256: 9803–9805 (1981).

    Google Scholar 

  20. B. Ardalan, R. I. Glazer, T. W. Kensler, et al, Synergistic effect of 5-fluorouracil and N-(phosphonacetyl)-L-aspartate on cell growth and ribonucleic acid synthesis in a human mammary carcinoma, Biochem. Pharmacol 30: 2045–2049 (1981).

    CAS  Google Scholar 

  21. D. S. Martin, R. L. Stolfi, and S. Spiegelman, Striking augmentation of the in vivo anticancer activity of 5-fluorouracil (5-FU) by combination with pyrimidine nucleosides: An RNA effect, Proc. Am Assoc Cancer Res 19: 221 (1978).

    Google Scholar 

  22. G. Weckbecker, and D. S. Keppler, Substrate properties of 5-fluorouridine diphospho sugars detected in hepatoma cells, Biochem Pharmacol 33: 2291–2298 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. F. Valeriote, and G. Santelli, 5-Fluorouracil (FUra), Pharmac Ther 24: 107–132 (1984).

    Article  CAS  Google Scholar 

  24. R. J. Epstein, Drug-induced DNA damage and tumor chemothersensitivity, J Clin Oncol 8: 2062–2084 (1990).

    PubMed  CAS  Google Scholar 

  25. W. B. Parker, and Y-C. Cheng, Metabolism and mechanism of action of 5-fluorouracil, Pharmac Ther 48: 381–395 (1990).

    Article  CAS  Google Scholar 

  26. R. M. Evans, J. D. Laskin, and M. T. Hakala, Assessment of growth-limiting events caused by 5-fluorouracil in mouse cells and in human cells, Cancer Res 40: 4113–4122 (1980).

    PubMed  CAS  Google Scholar 

  27. K. D. Collins, and G. R. Stark, Aspartate transcarbamylase interaction with the transition state analogue N-(phosphonacetyl)-L-aspartate, J. Biol. Chem 246: 6599–6605 (1971).

    PubMed  CAS  Google Scholar 

  28. D. S. Martin, R. Nayak, R. Sawyer, et al, Enhancement of 5-fluorouracil chemotherapy with emphasis on the use of excess thymidine, Cancer Bull 30: 219–222 (1978).

    Google Scholar 

  29. D. S. Martin, R.L. Stolfi, R. C. Sawyer, et al, An overview of thymidine, Cancer 45: 1117–1128 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. R. K. Johnson, J. J. Clement, and W. S. Howard, Treatment of murine tumors with 5-fluorouracil in combination with de novo pyrimidine synthesis inhibitors PALA or pyrazofurin, Proc Am Assoc Cancer Res 21: 292 (1980).

    Google Scholar 

  31. B. Ardalan, R. Glazer, T. Kensler, et al, Biochemical mechanism for the synergism of 5-fluorouracil (5-FU) and phosphonacetyl-L-aspartate (PALA) in human mammary carcinoma cells, Proc Am Assoc Cancer Res 21: 8 (1980).

    Google Scholar 

  32. D. S. Martin, R. L. Stolfi, R. C. Sawyer, et al, Biochemical modulation of 5-fluorouracil and cytosine arabinoside with emphasis on thymidine, PALA, and 6-methylmercaptopurine riboside, in Tattersall MHN, Fox RM (eds): Nucleosides and Cancer Treatment. Sydney, Academic Press, (1981), pp. 339–382.

    Google Scholar 

  33. G. J. Peters, E. Laurensse, A. Leyva, et al, The concentration of 5-phosphoribosyl 1-pyrophosphate in monolayer tumor cells and the effect of various pyrimidine antimetabolites, Int J Biochem 17: 95–99 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. P. P. Major, E. M. Egan, L. Sargent, et al, Modulation of 5-FU metabolism in human MCF-7 breast carcinoma cells, Cancer Chemother. Pharmacol 8: 87–91 (1982).

    CAS  Google Scholar 

  35. A. A. Miller, E. C. Moore, R. B. Hurlbert, et al, Pharmacological and biochemical interactions of N-(phosphonacetyl)-L-aspartate and 5-fluorouracil in beagles, Cancer Res 43: 2565–2570 (1983).

    PubMed  CAS  Google Scholar 

  36. C. E. Moore, J. Friedman, M. Valdivieso, et al, Aspartate carbamoyltransferase activity, drug concentrations and pyrimidine nucleotides in tissue from patients treated with N-(phosphonacetyl)-L-aspartate, Biochem Pharmacol 31: 3317–3321 (1982).

    Article  PubMed  CAS  Google Scholar 

  37. W. W. Ackerman, and V. R. Potter, Enzyme inhibition in relation to chemotherapy, Proc Soc Biol Med 72: 1–9 (1949).

    Google Scholar 

  38. C. M. Liang, R. C., Donehower, and B. A. Chabner, Biochemical interactions between N-(phosphonacetyl)-L-aspartate and 5-fluorouracil, Mol Pharmacol 21: 224–230 (1982).

    PubMed  CAS  Google Scholar 

  39. J. L. Grem, S. A. King, P. J. O’Dwyer, et al, Biochemistry and clinical activity of N-(phosphonacetyl)-L-aspartate: A review, Cancer Res 48: 4441–4454 (1988).

    PubMed  CAS  Google Scholar 

  40. D. S. Martin, and N.E. Kemeny, Overview of PALA + 5-fluorouracil in clinical trials, Semin Oncol 18: 228–233, (1991) (suppl 8).

    Google Scholar 

  41. S. H. Harrison, H. D. Giles, and E. P. Denine, Hematologic and histopatholic evaluation of N-(phosphonacetyl)-L-aspartate (PALA) in mice, Cancer Chemother Pharmacol 2: 183–187 (1979).

    Article  PubMed  CAS  Google Scholar 

  42. N. E. Kemeny, and P. Costa, Phase II trial of PALA and FU in metastatic colorectal carcinoma, Proc Am Soc Clin Oncol 10: (1991).

    Google Scholar 

  43. L. D. Nord, R. L. Stolfi, and D. S. Martin, Biochemical modulation of 5-fluorouracil with leucovorin or delayed uridine rescue. Correlation of antitumor activity with dosage and FUra incorporation into RNA, Biochem. Pharmacol 43: 2543–2549 (1992).

    CAS  Google Scholar 

  44. D. S. Martin, R. L. Stolfi and R. C. Sawyer, Improved therapeutic index with sequential N-phosphonacetyl-L-aspartate plus high-dose methotrexate plus high-dose 5-fluorouracil and appropriate rescue, Cancer Res 43: 4653–4661 (1983).

    PubMed  CAS  Google Scholar 

  45. P. J. O’Dwyer, G. Hudes, J. Colofiore, et al, Phase I trial of Fluorouracil modulation by N-phosphonacetyl-L-aspartate and 6-methylmercaptopurine riboside dose and schedule through biochemical analysis of sequential tumor biopsy specimens, J Natl Cancer Inst 83: 1235–1240 (1991).

    Article  PubMed  Google Scholar 

  46. R. A. Woods, R. M. Henderson, and J. F. Henderson, Consequences of inhibition of purine biosynthesis de novo by 6-methylmercaptopurine ribonucleoside in cultured lymphoma L5178 cells, Eur J Cancer 14: 765–770 (1978).

    Article  PubMed  CAS  Google Scholar 

  47. G. B. Grindey, J. K. Lowe, A. Y. Direker et al, Potentiation by guanine nucleosides of the growth-inhibitory effects of adenosine analogues on L1210 and Sarcoma 180 cells in culture, Cancer Res 36: 379–383 (1976).

    PubMed  CAS  Google Scholar 

  48. D. Hunting, J. Hordern, and J. F. Henderson, Effects of altered ribonucleotide concentrations on ribonucleotide reduction in intact Chinese hamster ovary cells, Can J Biochem 59: 821–829 (1981).

    PubMed  CAS  Google Scholar 

  49. N. Kyprianou, and J. T. Isaacs, Thymineless death in androgen-independent prostatic cancer cells, Biochem Biophys Res Commun 165: 73–81 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. M. A. Barry, C. A. Behnke, and A. Eastman, Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins, and hyperthermia, Biochem Pharmacol 40: 2353–2362 (1990).

    Article  PubMed  CAS  Google Scholar 

  51. I. U. Schraufstatter, D. B. Hinshaw, P. A. Hyslop, et al, Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate polymerase and lead to depletion of nicotinamide adenine dinucleotide, J Clin Invest 77: 1312–1320 (1986).

    Article  PubMed  CAS  Google Scholar 

  52. P.A. Hyslop, D.B. Hinslaw, W.A. Halsey, Jr., et al, Mechanisms of oxidant-mediated injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide, J. Biol. Chem., 263: 1665–1675 (1988).

    PubMed  CAS  Google Scholar 

  53. A.R. Boobis, DJ. Fawthrop, and D.S. Davies, Mechanism of cell death, Trends Pharmacol. Sci., 10: 275–280 (1989).

    Article  PubMed  CAS  Google Scholar 

  54. N.A. Berger, S.J. Berger, and S.L. Gerson, DNA repair, ADP ribosylation and pyridine nucleotide metabolism as targets for cancer chemotherapy, Anti-Cancer Drug Design 2: 203–210 (1987).

    PubMed  CAS  Google Scholar 

  55. R.L. Stolfi, L.M. Stolfi, R.C. Sawyer, and D.S. Martin, Chemotherapeutic evaluation using clinical criteria in spontaneous, autochthonous murine breast tumors, J. Natl. Cancer Inst., 80: 52–55 (1988).

    Article  PubMed  CAS  Google Scholar 

  56. R.L. Stolfi, J.R. Colofiore, L.D. Nord, J.A. Koutcher, and D.S. Martin, Biochemical modulation of tumor cell energy: regression of advanced spontaneous murine breast tumors with a 5-fluorouracil-containing drug combination, Cancer Res. 52: 4074–4081 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, D.S. (1993). Biochemical Modulation of 5-Fluorouracil by Pala: Mechanism of Action. In: Rustum, Y.M. (eds) Novel Approaches to Selective Treatments of Human Solid Tumors. Advances in Experimental Medicine and Biology, vol 339. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2488-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2488-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6060-5

  • Online ISBN: 978-1-4615-2488-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics