Skip to main content

Regulation of Thymidylate Synthase in Human Colon Cancer Cells Treated with 5-Fluorouracil and Interferon-Gamma

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 339))

Abstract

5-Fluorouracil (5-FU) remains, at present, the single most active agent for the treatment of human colorectal cancer. When used as a single agent against advanced disease, it is associated with an overall response rate of only 15–20%, and therapy with 5-FU is unable to prolong the survival of treated patients [1–3]. Since few other agents have been identified for the treatment of human colorectal cancer, considerable attention has focused on elucidating the basic mechanisms of 5-FU action. The cytotoxic effects of 5-FU have been traditionally ascribed either to inhibition of the critical target enzyme thymidylate synthase (TS) by the 5-FU metabolite 5-fluoro-2′-deoxyuridine-5′-monophosphate (FdUMP) with subsequent inhibition of thymidylate and DNA biosynthesis, to incorporation of the 5-FU metabolite 5-fluorouridine-5′-triphosphate (FUTP) into RNA with resultant inhibition of RNA synthesis and function, or to incorporation of the 5-FU metabolite 5-fluoro-2′-deoxyuridine-5′-triphosphate (FdUTP) into DNA with resultant inhibition of DNA synthesis and function [1–11]. The relative contribution of each of these metabolic processes remains unclear at this time.

Address reprint request to Daniel S. Martin, Cancer Research,89-15 Woodhaven Blvrd., Woodhaven, NY 11421

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.M. Pinedo and G.F.J. Peters, Fluorouracil: biochemistry and pharmacology, J. Clin. Oncol. 6: 1653–1664 (1988).

    PubMed  CAS  Google Scholar 

  2. C. Heidelberger, Fluorinated pyrimidines and their nucleosides, in: “Antineoplastic and Immunosuppressive Agents,” A. Sartorelli and D. Johns, eds, Springer-Verlag, New York, pp 193–231 (1975).

    Google Scholar 

  3. C. Heidelberger, P.V. Danenberg and R.G. Moran, Fluorinated pyrimidines and their nucleosides, Adv. Enzymol. Related Areas Mol. Biol. 54: 57–119 (1989).

    Google Scholar 

  4. D.V. Santi, C.S. McHenry and H. Sommer, Mechanism of interaction of thymidine synthetase with 5-fluorodeoxyuridylate, Biochemistry 13: 471–481 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. B. Ardalan, D. Cooney, H. Jayaram, C. Carrico, R. Glazar, J. Macdonald and P.S. Schein, Mechanisms of sensitivity and resistance of murine tumors to 5-fluorouracil, Cancer Res. 40: 1431–1437 (1980).

    PubMed  CAS  Google Scholar 

  6. S. Spiegelman, R. Sawyer, R. Nayak, E. Ritzi, R. Stolfi and D. Martin, Improving the antitumor activity of 5-fluorouracil by increasing its incorporation into RNA via metabolic modulation, Proc. Natl. Acad. Sci. USA 77: 4966–4970 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. D.S. Wilkinson and J. Crumley, The mechanism of 5-fluorouridine toxicity in Novikoff hepatoma cells, Cancer Res. 36: 4032–4038 (1976).

    PubMed  CAS  Google Scholar 

  8. R.I. Glazar and A.L. Peale, The effect of 5-fluorouracil on the synthesis of nuclear RNA in L1210 cells in vitro, Mol. Pharmacol. 16: 270–277 (1979).

    Google Scholar 

  9. D.W. Kufe, P.P. Major, E.M. Egan and E. Loh, 5-Fluoro-2′-deoxyuridine incorporation in L1210 DNA, J. Biol. Chem. 256: 8885–8888 (1981).

    PubMed  CAS  Google Scholar 

  10. P.P. Major, E. Egan, D. Herrick and D.W. Kufe, 5-Fluorouracil incorporation in DNA of human breast carcinoma cells, Cancer Res. 42: 3005–3009 (1982).

    PubMed  CAS  Google Scholar 

  11. Y-C. Cheng and K. Nakayama, Effects of 5-fluoro-2′-deoxyuridine on DNA metabolism in HeLa cells, Mol. Pharmacol. 23: 171–174 (1983).

    Article  CAS  Google Scholar 

  12. D. Kessel, T.C. Hall and I. Wodinsky, Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemia, Science 154: 911–913 (1966).

    PubMed  CAS  Google Scholar 

  13. J.A. Houghton, S.J. Maroda, J.O. Phillips and P.J. Houghton, Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice, Cancer Res. 41: 144–149 (1981).

    PubMed  CAS  Google Scholar 

  14. M.A. Mulkins and C. Heidelberger, Biochemical characterization of fluoropyrimidine-resistant murine leukemic cell lines, Cancer Res. 42: 965–973 (1982).

    PubMed  CAS  Google Scholar 

  15. M.B. Yin, S.F. Zakrzewski and M.T. Hakala, Relationship of cellular folate cofactor pools to the activity of 5-fluorouracil, Mol. Pharmacol. 23: 190–197 (1983).

    CAS  Google Scholar 

  16. D.J. Fernandes and S.K. Crawford, Resistance of CCRF-CEM cloned sublines to 5-fluorodeoxyuridine associated with enhanced phosphatase activities, Biochem. Pharmacol. 34: 125–132 (1985).

    CAS  Google Scholar 

  17. S.H. Berger, C-H. Jenh, L.F. Johnson and F. Berger, Thymidylate synthase overproduction and gene amplification in fluorodeoxyuridine-resistant human cells, Mol. Pharmacol. 28: 461–467 (1985).

    CAS  Google Scholar 

  18. J.L. Clark, S.H. Berger, A. Mittelman and F. Berger, Thymidylate synthase gene amplification in a colon tumor resistant to fluoro-pyrimidine chemotherapy, Cancer Treat. Rep. 71: 261–265 (1987).

    CAS  Google Scholar 

  19. S.H. Berger, K.W. Barbour and F. Berger, A naturally occurring variation in thymidylate synthase structure is associated with a reduced response to 5-fluoro-2′-deoxyuridine in a human colon tumor cell line, Mol. Pharmacol. 34: 480–484 (1988).

    CAS  Google Scholar 

  20. E. Chu, G-M. Lai, S. Zinn and C.J. Allegra, Resistance of a human ovarian cancer line to 5-fluorouracil associated with decreased levels of 5-fluorouracil in DNA, Mol. Pharmacol. 38: 410–417 (1990).

    CAS  Google Scholar 

  21. E. Chu, J.C. Drake, D.M. Koeller, S. Zinn, C.A. Jamis-Dow, G.C. Yeh and C.J. Allegra, Induction of thymidylate synthase associated with multidrug resistance in human breast and colon cancer cell lines, Mol. Pharmacol. 39: 136–143 (1990).

    Google Scholar 

  22. C. Aschele, A. Sobrero, M.A. Faderan and J.R. Bertino, Novel mecha-nism(s) of resistance to two different clinically relevant dose schedules, Cancer Res. 52: 1855–1864 (1992).

    PubMed  CAS  Google Scholar 

  23. C.P. Spears, A.H. Shahinian, R.G. Moran, C. Heidelberger and T.H. Corbett, In vivo kinetics of thymidylate synthase inhibition in 5-fluorouracil-sensitive and -resistant murine colon adenocarcinomas, Cancer Res. 42: 450–456 (1982).

    PubMed  CAS  Google Scholar 

  24. W.L. Washtien, Increased levels of thymidylate synthetase in cells exposed to 5-fluorouracil, Mol. Pharmacol. 25: 171–177 (1984).

    CAS  Google Scholar 

  25. M. Berne, B. Gustavsson, O. Almersjo, P.C. Spears and R. Frosing, Sequential methotrexate/5-FU: FdUMP formation and TS inhibition in a transplantable rodent colon adenocarcinoma, Cancer Chemother. Pharmacol. 16: 237–242 (1986).

    CAS  Google Scholar 

  26. M. Berne, B. Gustavsson, O. Almersjo, C.P. Spears and J. Waldenstrom, Concurrent allopurinol and 5-fluorouracil: 5-fluoro-2′-deoxyuri-dylate formation and thymidylate synthase inhibition in rat colon carcinoma and in regenerating rat liver, Cancer Chemother. Pharmacol. 20: 193–197 (1987).

    CAS  Google Scholar 

  27. K. Keyomarsi and R.G. Moran, Mechanism of the cytotoxic synergism of fluoropyrimidines and folinic acid in mouse leukemic cells, J. Biol. Chem. 263: 14402–14409 (1988).

    PubMed  CAS  Google Scholar 

  28. S.M. Swain, M.E. Lippman, E.F. Egan, J.C. Drake, S.M. Steinberg and C.J. Allegra, Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer, J. Clin. Oncol. 7: 890–899 (1989).

    PubMed  CAS  Google Scholar 

  29. M. Namba, T. Miyoshi, T. Kanamori, M. Nobuhara, T. Kimoto and S. Ogawa, Combined effects of 5-fluorouracil and interferon on proliferation of human neoplastic cells in culture, Gann 73: 819–824 (1982).

    PubMed  CAS  Google Scholar 

  30. T. Miyoshi, S. Ogawa, T. Kanamori, M. Nobuhara and M. Namba, Interferon potentiates cytotoxic effects of 5-fluorouracil on cell proliferation of established human cell lines originating from neoplastic tissues, Cancer Lett. 17: 239–241 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. M. Inoue and Y.H. Tan, Enhancement of actinomycin-D and cis-diammine-dichloroplatinum(II)-induced killing of human fibroblasts by human beta interferon, Cancer Res. 43: 5484–5488 (1983).

    PubMed  CAS  Google Scholar 

  32. D. Le, Y.K. Yip and J. Vilcek, CYtolytic activity of interferon-gamma and its synergism with 5-fluorouracil, Int. J. Cancer 34: 495–500 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. S. Yamamoto, H. Tanaka, T. Kanamori, M. Nobuhara and M. Namba, In vitro studies of cytotoxic effects of anticancer drugs by interferon on a human neoplastic cell line (HeLa), Cancer Lett. 20: 131–138 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Kimoto, Antitumor effect of interferons with chemotherapeutic agents, Gan. To Kayaku Ryoho 13: 293–301 (1986).

    CAS  Google Scholar 

  35. K. Gohji, S. Macda, T. Sugiyama, J. Ishigumi and S. Kamidona, Enhanced inhibition of anticancer drugs by human recombinant gamma-interferon for human renal cell carcinoma in vitro, J. Urol. 137: 539–543 (1987).

    PubMed  CAS  Google Scholar 

  36. M.S. Mitchell, Combining chemotherapy with biological response modifiers in treatment of cancer, J. Natl. Cancer Inst. 80: 1445–1450 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. L. Elias and H.A. Crissman, Interferon effects on the adenocarcinoma 38 and HL-60 cell lines: antiproliferative responses and synergistic interactions with halogenated pyrimidine antimetabolites, Cancer Res. 48: 4868–4873 (1988).

    PubMed  CAS  Google Scholar 

  38. L. Elias and J.M. Sandoval, Interferon effects upon fluorouracil metabolism by HL-60 cells, Biochem. Biophys. Res. Commun. 130: 379–388 (1989).

    Google Scholar 

  39. E.L. Schwartz, M. Hoffman, C.J. O’Connor and S. Wadler, Stimulation of 5-fluorouracil metabolic activation by interferon-alpha in human colon carcinoma cells, Biochem. Biophys. Res. Commun. 182: 1232–1239 (1992).

    Article  CAS  Google Scholar 

  40. J.A. Houghton, D.A. Adkins, A. Rahman and P.J. Houghton, Interaction between 5-fluorouracil, [6RS]leucovorin, and recombinant human interferon-alpha-2a in cultured colon adenocarcinoma cells, Cancer Commun. 3: 225–231 (1991).

    PubMed  CAS  Google Scholar 

  41. E. Chu, S. Zinn, D. Boarman and C.J. Allegra, Interaction of gamma interferon and 5-fluorouracil in the H630 human colon carcinoma cell line, Cancer Res. 50: 5834–4840 (1990).

    PubMed  CAS  Google Scholar 

  42. P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem. 162: 156–159 (1987).

    CAS  Google Scholar 

  43. J. Harford, An artifact explains the apparent association of the transferrin receptor with a ras gene product, Nature 311: 493–495 (1984).

    Article  Google Scholar 

  44. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680–685 (1986).

    Article  Google Scholar 

  45. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  46. E. Chu, D.M. Koeller, J.L. Casey, J.C. Drake, B.A. Chabner, P.G. Elwood, S. Zinn and C.J. Allegra, Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase, Proc. Natl. Acad. Sci. USA 88: 8977–8981 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chu, E., Allegra, C.J. (1993). Regulation of Thymidylate Synthase in Human Colon Cancer Cells Treated with 5-Fluorouracil and Interferon-Gamma. In: Rustum, Y.M. (eds) Novel Approaches to Selective Treatments of Human Solid Tumors. Advances in Experimental Medicine and Biology, vol 339. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2488-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2488-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6060-5

  • Online ISBN: 978-1-4615-2488-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics