Advertisement

Enhanced Cytotoxicity of 5-Fluorouracil Combined with [6RS]Leucovorin and Recombinant Human Interferon-α2a in Colon Carcinoma Cells

  • Janet A. Houghton
  • David A. Adkins
  • Peter J. Houghton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 339)

Abstract

We had proposed previously that one mechanism of intrinsic resistance to 5-fluorouracil (FUra) in colon adenocarcinomas was suboptimal concentrations of intracellular 5,10-methylenetetrahydrofolate (CH2-H4PteGlun).1 Whereas the concentration of this reduced folate may not be rate limiting for thymidylate synthesis de novo, it may be suboptimal to allow maximal interaction between the FUra metabolite, 5-fluorodeoxyuridylate (FdUMP), and thymidylate synthase.1–5 Supplementation with a reduced folate, therefore, elevates intracellular levels of CH2-H4PteGlun and enhances the rate of formation or stabilization of the ternary complex. In human colon tumor xenografts, pools of CH2-H4PteGlun and H4PteGlun expanded by 2- to 5-fold in response to 24 hr infusions of [6RS]leucovorin ([6RS]LV), elevating species containing from 2 to 5 glutamate residues.67

Keywords

Thymidine Kinase Colon Adenocarcinoma Human Colon Adenocarcinoma Human Colon Cancer Cell Line Thymidylate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Houghton, S.J. Maroda, J.O. Phillips, and P.J. Houghton, Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in human colorectal adenocarcinoma xenografts, Cancer Res. 41: 144 (1981).PubMedGoogle Scholar
  2. 2.
    J.A. Houghton, L.G. Williams, S. Radparvar, and P.J. Houghton, Characterization of the pools of 5, 10-methylenetetrahydrofolates and tetrahydrofolates in xenografts of human colon adenocarcinoma, Cancer Res. 48: 3062 (1988).PubMedGoogle Scholar
  3. 3.
    A. Lockshin and P.V. Danenberg, Biochemical factors affecting the tightness of 5-fluorodeoxyuridylate binding to human thymidylate synthase, Biochem. Pharmacol. 30: 247 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    S. Radparvar, P.J. Houghton, and J.A. Houghton, Effect of polyglutamylation of 5, 10-methylenetetrahydrofolate on the binding of 5-fluoro-2′-deoxyuridylate to thymidylate synthase purified from a human colon adenocarcinoma xenograft, Biochem. Pharmacol. 38: 335 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Ullman, M. Lee, D.W. Martin, and D.V. Santi, Cytotoxicity of 5-fluoro-2′-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate, Proc. Natl. Acad. Sci. USA 75: 980 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    J.A. Houghton, L.G. Williams, S.S. N. de Graaf, P.J. Cheshire, J.H. Rodman, D.C. Maneval, I.W. Wainer, P. Jadaud, and PJ. Houghton, Relationship between dose rate of [6RS]leucovorin administration, plasma concentrations of reduced folates, and pools of 5, 10-methylenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts, Cancer Res. 50: 3493 (1990).Google Scholar
  7. 7.
    J.A. Houghton, L.G. Williams, P.J. Cheshire, I.W. Wainer, P. Jadaud, and P.J. Houghton, Influence of dose of [6RS]leucovorin on reduced folate pools and 5-fluorouracil-mediated thymidylate synthase inhibition in human colon adenocarcinoma xenografts, Cancer Res. 50: 3940 (1990).PubMedGoogle Scholar
  8. 8.
    J.H. Doroshow, P. Multhauf, L. Leong, K. Margolin, T. Litchfield, S. Akman, B. Carr, M. Bertrand, D. Goldberg, D. Blayney, O. Odujinrin, R. Dehop, J. Shuster, E. Newman, Prospective randomized comparison of fluorouracil versus fluorouracil and high-dose continuous infusion leucovorin calcium for the treatment of advanced measurable colorectal cancer in patients previously unexposed to chemotherapy, J. Clin. Oncol. 8: 491 (1990).PubMedGoogle Scholar
  9. 9.
    C. Erlichman, S. Fine, A. Wong, and T. Elhakim, A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma, J. Clin. Oncol. 6: 469 (1988).PubMedGoogle Scholar
  10. 10.
    N. Petrelli, L. Herrera, Y. Rustum, P. Burke, P. Creaven, J. Stulc, L.J. Emrich, A. Mittelman, A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma, J. Clin. Oncol. 5: 1559 (1987).PubMedGoogle Scholar
  11. 11.
    M.A. Poon, M.J. O’Connell, C.G. Moertel, H.S. Wieand, S.A. Cullinan, L.K. Everson, J.E. Krook, J.A. Mailliard, J.A. Laurie, L.K. Tschetter, and M. Weisenfeld, Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal caricnoma, J. Clin. Oncol. 7: 1407 (1989).PubMedGoogle Scholar
  12. 12.
    S. Wadler, E.L. Schwartz, M. Goldman, A. Lyver, M. Rader, M. Zimmerman, L. Itri, V. Weinberg, and P.H. Wiernik, 5-fluorouracil and recombinant α-2a-interferon: an active regimen against colorectal carcinoma, J. Clin. Oncol. 7: 1769 (1989).PubMedGoogle Scholar
  13. 13.
    N. Kemeny, A. Younes, K. Sciter, D. Kelsen, P. Sammarco, L. Adams, S. Derby, P. Murray, and C. Houston. Interferon α-2a and 5-fluorouracil for advanced colorectal carcinoma, Cancer 66: 2470 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Pazdur, J.A. Ajani, Y.Z. Patt, R. Winn, D. Jackson, B. Shepard, R. DuBrow, L. Campos, M. Quaraishi, J. Faintuch, J.L. Abbruzzese, J. Gutterman, and B. Levin, Phase II study of fluorouracil and recombinant interferon α-2a in previously untreated advanced colorectal carcinoma, J. Clin. Oncol. 8: 2027 (1990).PubMedGoogle Scholar
  15. 15.
    L. Elias and J.A. Crissman, Interferon effects upon the adenocarcinoma 38 and HL-60 cell lines: antiproliferative responses and synergistic interactions with halogenated pyrimidine antimetabolites, Cancer Res. 48: 4868 (1988).PubMedGoogle Scholar
  16. 16.
    E. Chu, S. Zinn, D. Boarman, and C.J. Allegra, Interaction of γ interferon and 5-fluorouracil in the H630 human colon carcinoma cell line, Cancer Res. 50: 5834 (1990).PubMedGoogle Scholar
  17. 17.
    S. Wadler, R. Wersto, V. Weinberg, D. Thompson, and E.L. Schwartz, Interaction of fluorouracil and interferon in human colon cancer cell lines: cytotoxic and cytokinetic effects, Cancer Res. 50: 5735 (1990).PubMedGoogle Scholar
  18. 18.
    S. Wadler and E.L. Schwartz, Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review, Cancer Res. 50: 3473 (1990).PubMedGoogle Scholar
  19. 19.
    P.W. Woodman, D.L. Williams, and H.H. Edwards, Heterogeneity in cell populations established in vitro from a human colon adenocarcinoma xenograft In Vitro 16: 211 (1980).Google Scholar
  20. 20.
    P.J. Houghton, JA. Houghton, G. Germain, and P.M. Torrance, Development and characterization of a human colon adenocarcinoma xenograft deficient in thymidine salvage, Cancer Res. 47: 2117 (1987).PubMedGoogle Scholar
  21. 21.
    S. Radparvar, P.J. Houghton, G. Germain, J. Pennington, A. Rahman, and J.A. Houghton, Cellular pharmacology of 5-fluorouracil in a human colon adenocarcinoma cell line selected for thymidine kinase deficiency, Biochem. Pharmacol. 39: 1759 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    B.J. Winer, Stastitical principles in experimental design, 2nd ed., McGraw-Hill, New York (1971).Google Scholar
  23. 23.
    L.M. Pfeffer, Cellular effects of interferons, in: “Mechanisms of interferon action,” L.M. Pfeffer, ed., CRC Press, Inc., Boca Raton, FL (1987).Google Scholar
  24. 24.
    K. Keyomarsi and R.G. Moran, Mechanism of the cytotoxic synergism of fluoropyrimidines and folinic acid in mouse leukemic cells, J. Biol. Chem. 263: 14402 (1988).PubMedGoogle Scholar
  25. 25.
    R.M. Evans, J.D. Laskin, and M.T. Hakala, Effect of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil, Cancer Res. 41: 3288 (1981).PubMedGoogle Scholar
  26. 26.
    K. Keyomarsi and R.G. Moran, Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemic cells, Cancer Res. 46: 5229 (1986).PubMedGoogle Scholar
  27. 27.
    C. Welander, Overview of preclinical and clinical studies of interferon α-2b in combination with cytotoxic drugs, Invest. New Drugs 5 (Suppl): 47 (1987).CrossRefGoogle Scholar
  28. 28.
    J. Gutterman, S. Fine, J. Quesada, S.J. Horning, J.F. Levine, R. Alexanian, L. Bernhardt, M. Kramer, H. Spiegel, W. Colburn, P. Trown, T. Merrigan, and Z. Dziewanowski, Recombinant leukocyte A interferon: pharmacokinetics, single-dose tolerance, and biologic effects in cancer patients, Ann. Intern. Med. 96: 549 (1982).PubMedGoogle Scholar
  29. 29.
    D. Machover, E. Goldschmidt, P. Chollet, C. Metzger, J. Zittoun, J. Marquet, J.-M. Vandenbulcke, J.-L. Misset, L. Schwarzenberg, J.B. Fourtillan, H. Gaget, and G. Mathe, Treatment of advanced colorectal and gastric adenocarcinomas with 5-fluorouracil and high-dose folinic acid, J. Clin. Oncol. 4: 685 (1986).PubMedGoogle Scholar
  30. 30.
    E. Newman, J. Doroshow, M. Bertrand, P. Burgeson, D. Villacorte, D. Blayney, D. Goldberg, B. Carr, L. Leong, K. Margolin, G. Cecchi, and R. Staples, Pharmacokinetics of high-dose folinic acid (DL-CF) administered by continuous intravenous (i.v.) infusion, Proc. Am. Assoc. Cancer Res. 26: 158 (1985).Google Scholar
  31. 31.
    J.A. Straw, E.M. Newman, and J.H. Doroshow, Pharmacokinetics of leucovorin (D, L-5-formyltetrahydrofolate) after intravenous injection and constant intravenous infusion, NCI Monogr. 5: 41 (1987).PubMedGoogle Scholar
  32. 32.
    N.J. Petrelli, Y.M. Rustum, H. Bruckner, and D. Stablein, The Roswell Park Memorial Institute and Gastrointestinal Tumor Study Group phase III experience with the modulation of 5-fluorouracil by leucovorin in metastatic colorectal adenocarcinoma, Adv. Exp. Med. Biol. 244: 143 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    D. Brouty-Boye and M.G. Tovey, Inhibition by interferon of thymidine uptake in chemostat cultures of L1210 cells, Intervirology 9: 243 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Divizia and C. Baglioni, Lack of correlation between thymidine kinase activity and the antiviral or antiproliferative response to interferon, Virology 133: 216 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    R.C. Jackson, A.L. Jackman, and A.H. Calvert, Biochemical effects of a quinazoline inhibitor of thymidylate synthetase, (N-(4-(N-((2-amino-4-hydroxy-6-quinazolinyl)methyl)prop-2-ynyla benzoyl)-L-gluatmic acid (CB3717), on human lymphoblastoid cells, Biochem. Pharmacol. 32: 3783 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    A.L. Jackman, G.A. Taylor, A.H. Calvert, and R.K. Harrap, Modulation of antimetabolite effects. Effects of thymidine on the efficacy of the quinazolinebased thymidylate synthetase inhibitor, CB3717, Biochem. Pharmacol. 33: 3269 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Janet A. Houghton
    • 1
  • David A. Adkins
    • 1
  • Peter J. Houghton
    • 1
  1. 1.Department of Biochemical and Clinical PharmacologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations