Skip to main content

Modulation of the Exocytotic Release of Neurotransmitter Glutamate by Protein Kinase C

  • Chapter
Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 341))

Abstract

Most excitatory synapses in the brain use the amino acid glutamate as their transmitter. Glutamate neurotransmission, being so wide spread, is involved in many functions in the Central Nervous System. Thus, there is evidence that an increase in the effectiveness of glutamatergic synapses mediate some forms of synaptic plasticity which participate in processes of memory and learning. On the other hand, glutamate is involved in the brain damage associated with hypoxia, hypoglycaemia, ischaemia, epilepsy and some neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMahon, H.T., and Nicholls, D.G., 1991. The bioenergetics of neurotransmitter release. Biochim. Biophys Acta. 1059:243–264.

    Article  PubMed  CAS  Google Scholar 

  2. Nicholls D.G., 1989 Release of glutamate and aminobutyric acid in isolated nerve terminals. J. Neurochem. 52:331–3417.

    Article  PubMed  CAS  Google Scholar 

  3. Maycox, P.R., Hell, J.W., and Jahn, R., 1990. Amino acid neurotransmission; spotlight on synaptic vesicles. Trends in Neurosci. 13:83–874

    Article  CAS  Google Scholar 

  4. Nicholls, D.G., and Sihra, T.S., 1986. Synaptosomes possess an exocytotic pool of glutamate. Nature 321, 772–773.

    Article  PubMed  CAS  Google Scholar 

  5. Nicholls, D.G., and Attwell, D., 1990. The release and uptake of excitatory amino acids. Trends in Pharmacol. Sci. 11:4683.

    Article  Google Scholar 

  6. Nicholls, D.G., Sihra, T.S., and Sánchez-Prieto, J., 1987. Calcium dependent and independent release of glutamate from synaptosomes monitored by contimuous fluorometry. J. Neurochem. 52:331–341.

    Article  Google Scholar 

  7. Sánchez-Prieto, J., Sihra, T.S., and Nicholls, D.G., 1987. Characterization of the exocytotic release of glutamate from guinea pig cerebrocortical synaptosomes. J. Neurochem. 49:58–64.

    Article  PubMed  Google Scholar 

  8. McMahon H.T., and Nicholls, D.G., 1991. Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+. J. Neurochem. 56:86–94.

    Article  PubMed  CAS  Google Scholar 

  9. Sánchez-Prieto, J., Sihra, T.S., Evans, D., Ashton, A., Dolly, J.O., and Nicholls D.G., 1987. Botulinum toxin A blocks glutamate exocytosis from guinea pig cerebral cortical synaptosomes. Eur. J. Biochem. 165:675–681.

    Article  PubMed  Google Scholar 

  10. Verhage, M., McMahon H.T., Ghijsen W.E.J.M., Boomsma, F., Wiegant, V., and Nicholls D.G., 1991. Differential release of aminoacids, neuropeptides and catecholamines from nerve terminals. Neuron. 6:1–7.

    Article  Google Scholar 

  11. Kauppinen, R.A., McMahon, H., and Nicholls D.G., 1988. Ca2+-dependent and Ca2+-independent glutamate release, energy status, and cytosolic free Ca2+ concentration in isolated nerve terminals following in vitro hypoglycaemia and anoxia. Neuroscience. 27:175–182.

    Article  PubMed  CAS  Google Scholar 

  12. Sánchez-Prieto, J., and González, M.P., 1988. Anoxia induces a large Ca2+-independent release of glutamate in isolated nerve terminals. J. Neurochem. 50:1322–1324.

    Article  PubMed  Google Scholar 

  13. Rubio, I., Torres, M., Miras-Portugal, MX, and Sánchez-Prieto, J., 1991. Ca2+-independent release of glutamate during in vitro anoxia in isolated nerve terminals. J. Neurochem. 59:1159–1164

    Article  Google Scholar 

  14. Choi, D.W., and Rothman S.M., 1990 The role of glutamate neurotoxicity in the hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–182.

    Article  PubMed  CAS  Google Scholar 

  15. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979. Calcium dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254:3692–3695.

    PubMed  CAS  Google Scholar 

  16. Nishizuka, Y., 1986. Studies and perspectives on protein kinase C. Science 233:305–312.

    Article  PubMed  CAS  Google Scholar 

  17. Nishizuka, Y., 1988. The molecular heterogenity of protein kinase C and its implications for cellular regulation. Nature 339:661–665.

    Article  Google Scholar 

  18. Akers, R.F., Lovinger, D.M., Colley, P.A., Linden D.J., and Routtenberg, A., 1986. Translocation of protein kinase C activity may mediate hlppocampal long term potentiation. Science 231:587–589.

    Article  PubMed  CAS  Google Scholar 

  19. Kikkawa, U., Kishimoto, A., Nishizuka, Y., 1989. The protein kinase C family: heterogenity and its implications. Annu. Rev. Biochem. 58:31–44.

    Article  PubMed  CAS  Google Scholar 

  20. Bell, R., 1986. Protein kinase C activation by diacylglycerol second messengers. Cell. 45:631–632.

    Article  PubMed  CAS  Google Scholar 

  21. Ganong, B., Loomis, C., Hannum, Y., and Bell, R., 1986. Specificity and mechanism of protein kinase C activation by sn-l, 2-diacylglycerols. Proc. Natl. Acad. Sci. USA 83:1184–1187.

    Article  PubMed  CAS  Google Scholar 

  22. Wolf, M., Le Vine, M.III., May, W.S.Jr., Cuatrecasas, P., and Sahyoun, N., 1985. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature, 317:546–549.

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Peña, A., and Rozengurt, E., 1984. Disappearance of Ca2+sensitive phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells. Biophys. Res. Commun. 120:1053–1059.

    Article  Google Scholar 

  24. Girard, P.R., Mazzei, G.J., Wood, J.G., and Kuo, J.F., 1985. Polyclonal antibodies tophospholipids/Ca2+-dependent protein kinase and inmunocytochemical localization of the enzyme. Proc. Natl. Acad. Sci. USA 82:3030–3034.

    Article  PubMed  CAS  Google Scholar 

  25. Shearman M.S., Shinomura, T., Oda, T., and Nishizuka., 1991. Synaptosomal protein kinase C subspecies: A., dynamic changes in the hippocampus and cerebellar cortex concomitant with synaptogenesis. J. Neurochem 56:1255–1262.

    Article  PubMed  CAS  Google Scholar 

  26. Díaz-Guerra, M.J.M., Sánchez-Prieto, J., Boscá, L., Pocock, J., Barrie, A., and Nicholls, D., Phorbol esters translocation and the potentiation of Ca2+-dependent glutamate relase. (1988). Biochim. Biophys Acta. 970:157–165.

    Google Scholar 

  27. Oda, T., Shearman, M.S., and Nishizuka, Y., (1991). Synaptosomal protein kinase C subspecies: B., Down-regulation promoted by phorbol esters and its effect on evoked norepinephrine release. J. Neurochem. 56:1263–1269.

    Article  PubMed  CAS  Google Scholar 

  28. Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y., 1977. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. J. Biol. Chem. 252:7603–7609.

    PubMed  CAS  Google Scholar 

  29. Lynch, M.A., and Bliss, T.V.P., 1986. Long-Term Potentiation of synaptic transmission in the hippocampus of the rat: effect of calmodulin and oleoyl-acetyl-glycerol on the release of [3H]-glutamate. Neuroscience Lett. 65:171–176.

    Article  CAS  Google Scholar 

  30. Nichols, R.A., Haycock, J. W., Wang, J.K.T., and Greengard, P., 1987. Phorbol ester enhancement of neurotransmitter release from the rat brain synaptosomes. J. Neurochem 48:615–621.

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka, C., Fujiwara, H., and Fujii, Y., 1986. Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium FEBS Lett. 195:129–134.

    Article  PubMed  CAS  Google Scholar 

  32. Malenka, R.C., Ayoub, B.S., and Nicoll R.A., 1988. Phorbol esters enhance transmitter release in the rat hippocampal slices. Brain. Res. 403:198–203.

    Article  Google Scholar 

  33. Tibbs, G.R., Barrie, A.P., Van-Mieghem, F., McMahon, H.T., and Nicholls D.G., 1989. Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic Ca2+ and glutamate release. J. Neurochem. 53:1693–1699.

    Article  PubMed  CAS  Google Scholar 

  34. Barrie, A.P., Nicholls, D.G., Sánchez-Prieto, J., and Sihra, T.S., 1991. An ion channel locus for the protein kinase C potentiation of transmitter release from guinea pig cerebrocortical synaptosomes. J. Neurochem 57:1398–1404.

    Article  PubMed  CAS  Google Scholar 

  35. Colby, K.A., and Blaustein, M.P., 1988. Inhibition of voltage gated K+ channels in synaptosomes by sn-l, 2-dioctanoylglycerol, an activator of protein kinase C. J., Neurosci. 8:4685–4692.

    CAS  Google Scholar 

  36. Lazarewicz J.W., Wroblewski, J.T., and Costa E. J., 1990. N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic release in primary cultures of cerebellar granule cells J. Neurochem. 55:1875–1881.

    Article  PubMed  CAS  Google Scholar 

  37. Piomelli, D., and Greengard, P., 1991. Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends in Pharmacol. Sci. 11:367–373.

    Article  Google Scholar 

  38. Rhoads, D.E., Ockner, R.K., Peterson, N.A., and Raghutathy, E.., 1983., Modulation of membrane transport by free sodium-dependent amino acid uptake. Biochemistry. 22:1965–1970.

    Article  PubMed  CAS  Google Scholar 

  39. Volterra, A., Trotti, D., Cassutti, P., Trombe, C., Salvaggio, A., Melgangi R.C., and Racagni, G., 1992. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cerebrocortical synaptosomes and astrocytes. J. Neurochem. 59:600–606.

    Article  PubMed  CAS  Google Scholar 

  40. Freeman, E., Terrian, D.M., Dorman, R.V., 1990. Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber nerve endings by arachidonic acid. Neurochem. Res. 15:743–750.

    Article  PubMed  CAS  Google Scholar 

  41. Lynch, M.A. and Voss, K.L., 1990. Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J. Neurochem. 55:215–221.

    Article  PubMed  CAS  Google Scholar 

  42. Herrero, I., Castro, E., Miras-Portugal, M.T., and Sánchez-Prieto, J., 1991. Glutamate exocytosis evoked by 4-aminopyridine is inhibited by free fatty acids released from rat cerebrocortical synaptosomes. Neurosci. Lett. 126:41–44.

    Article  PubMed  CAS  Google Scholar 

  43. Herrero, I., Miras-Portugal, M.T., and Sánchez-Prieto, J., 1991. Inhibition of glutamate release by arachidonic acid in rat cerebrocortical synaptosomes. J. Neurochem. 57:718–721.

    Article  PubMed  CAS  Google Scholar 

  44. Piomelli, D., Wang, J.K.T., Sihra, T.S., Nairn, A.C., Czernik, A.J., and Greengard, P., 1989. Inhibition of Ca2+/calmodulin-dependent protein kinase II by arachidonic acid and its metabolites. Proc. Natl. Acad. Sci. USA. 86:8550–8554.

    Article  PubMed  CAS  Google Scholar 

  45. Freeman, E.J., Damron, D.S., Terrian, D.M., and Dorman, R.V., 1991. 12-lipoxygenase products attenuate the glutamate release and Ca2+-accumulation evoked by depolarization of hippocampal nerve endings. J. Neurochem 56:1079–1082.

    Article  PubMed  CAS  Google Scholar 

  46. Murakami, K., and Routtenberg, A., 1985. Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+ FEBS. Lett. 192:189–193.

    Article  PubMed  CAS  Google Scholar 

  47. Shearman, M.S., Naor, Z., Sekiguchi, K., Kishimoto, A., and Nishizuka, Y., 1989. Selective activation of the subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites. FEBS Lett. 243:177–182.

    Article  PubMed  CAS  Google Scholar 

  48. Herrero, I., Miras-Portugal, M.T., and Sánchez-Prieto, J., 1992. PKC-independent inhibition of glutamate exocytosis by arachidonic acid in rat cerebrocortical synaptosomes. FEBS Lett. 296:317–319.

    Article  PubMed  CAS  Google Scholar 

  49. Shinomura, T., Asaoka, Y., Oka, M., Yoshida, K., and Nishizuka, Y., 1991. Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implications. Proc. Natl. Acad. Sci. USA 88:5149–5153.

    Article  PubMed  CAS  Google Scholar 

  50. Shearman, M.S., Shinomura, T., Oda, T. and Nishizuka, Y.., 1991. Protein kinase C subspecies in adult rat hippocampal synaptosomes. Activation by diacylglycerol and arachidonic acid. FEBS Lett. 279:261–264.

    Article  PubMed  CAS  Google Scholar 

  51. Herrero, I., Miras-Portugal, MX, and Sánchez-Prieto. 1992. Activation of protein kinase C by phorbol esters and by arachidonic acid required for the optimal potentiation of glutamate exocytosis. J. Neurochem. 59:1574–1577.

    Article  PubMed  CAS  Google Scholar 

  52. Audigier, S.M.P., Wang, J.K.T and Greengard, P., 1988. Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals. Proc. Natl. Acad. Sci. USA 85:2859–2863.

    Article  PubMed  CAS  Google Scholar 

  53. Gandhi C.R., and Ross, D.H., 1987. Inositol 1,4,5-trisphosphate induced mobilization of Ca2+ from rat brain synaptosomes. Neurochem. Res. 12:67–72.

    Article  PubMed  CAS  Google Scholar 

  54. Schoepp, D., Bockaert, J., and Sladeczek, F., 1990. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends in Pharmacol. Sci. 11:508–515.

    Article  CAS  Google Scholar 

  55. Herrero, I., Miras-Portugal, M.T., and Sánchez-Prieto, J.., 1992. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature, 360:163–166.

    Article  PubMed  CAS  Google Scholar 

  56. Adamson, P., Hajimohammadreza, I., Brammer, M.J., Campbell I.C., and Meldrum, B.S., 1990. Presynaptic glutamate/quisqualate receptors: effect on synaptosomal free calcium concentrations. J. Neurochem. 55:1850–1854.

    Article  PubMed  CAS  Google Scholar 

  57. Bliss, T.V.P., and Lomo, T., 1973. Long lasting potentiation of synaptic transmission in the dentate of the anaesthetized rabbit following stimulation of the perforant path. J.Physiol. (Lond.) 232:331–356.

    PubMed  CAS  Google Scholar 

  58. Davies, S.N., Lester, R.A., Reyman, K.G., and Collingridge, G.L., 1989. Temporally distinct pre and postsynaptic mechanism maintain long-term potentiation. Nature. 338:500–503.

    Article  PubMed  CAS  Google Scholar 

  59. Bliss, T.V.P., Douglas, R.M., Errington, M.L., and Lynch, M.A., 1986. Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. J. Physiol. (Lond.) 377:391–408.

    PubMed  CAS  Google Scholar 

  60. Williams, J.H., Errington, M.A., Lynch, M.A., and Bliss, T.V.P., 1989. Arachidonic acid induces long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–741.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sánchez-Prieto, J., Herrero, I., Miras-Portugal, M.T. (1993). Modulation of the Exocytotic Release of Neurotransmitter Glutamate by Protein Kinase C. In: Grisolía, S., Felipo, V. (eds) Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, vol 341. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2484-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2484-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6058-2

  • Online ISBN: 978-1-4615-2484-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics