Skip to main content

Diffuse Scattering Determination of Short Range Order in Alloys

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 319))

Abstract

Scattering experiments using x-rays and neutrons are particularly useful for investigating local structure properties on atomic length scales in condensed matter. The strict periodic order of an ideal crystal gives rise only to sharp Bragg peaks. There are many effects in real materials, however, which may disturb the ideal order. Substitutional and interstitial defects, lattice displacements of static origin as well as those due to thermal vibrations, voids, precipitates, surfaces, grain boundaries, typically exist in solids. Commercial alloys owe many of their valuable properties to a good mixture of these kinds of disturbances. Scattering contributions due to such disorder will show up in some fashion in the diffuse scattering, i. e. the scattering between the Bragg peaks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. von Laue, Ann. Phys. 56:497 (1918).

    Google Scholar 

  2. J. M. Cowley, J. Appl. Phys. 21:24 (1950).

    Google Scholar 

  3. B. E. Warren, B. L. Averbach. Modern Research Techniques in Physical Metallurgy, pp 95–130, ASM, Cleveland (1953).

    Google Scholar 

  4. C. J. Sparks, B. Borie, Local atomic arrangements studied by x-ray diffraction, pp 5–46, Gordon & Breach, New York (1966).

    Google Scholar 

  5. A. Guinier. X-Ray Diffraction, Freeman, San Francisco (1963).

    Google Scholar 

  6. M. A. Krivoglaz. Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Translation, ed. S. C. Moss, nPlenum Press, New York (1969).

    Google Scholar 

  7. W. Schmatz, X-ray and neutron scattering studies in disordered crystals, in Treatise in Materials Science and Technology, Vol.2, ed. by H. H.Herman, Academic Press,New York (1973); W. Schmatz, Diffuse scattering in Neutron Diffraction, Topics in Current Physics 6, ed. H. Dachs, Springer, Berlin

    Google Scholar 

  8. L. Schwartz and J. B. Cohen. Diffraction from Materials, Academic Press, New York (1977).

    Google Scholar 

  9. H. Chen, R. J. Comstock, J. B. Cohen, Ann. Rev. Mater Sci. 9:51 (1979).

    Google Scholar 

  10. D. de Fontaine, Configurational thermodynamics of solid solutions in Sol. Stat. Phys. 34:73–274 (1979).

    Google Scholar 

  11. A. G. Khachaturyan. The Theory of Structural Transformations in Solids, Wiley & Sons, New York (1983).

    Google Scholar 

  12. G. M. Stocks, ibid.

    Google Scholar 

  13. A. Zunger, ibid.

    Google Scholar 

  14. Handbook of Synchrotron Radiation, North Holland, Amsterdam, Vol. la and b, ed. E. Koch (1983); Vol. 2, ed. G. v. Man; anomalous scattering: D. H. Templeton pp. 201-220 in Vol. 3, eds. G. S. Brown, D. E. Moncton (1991), Vol. 4, eds. G. S. Brown, D. E. Moncton (1991).

    Google Scholar 

  15. H. A. Kramers, Phys. Z 30:522 (1929); R. de Kronig, J. Opt. Soc. Amer. 12:547 (1926).

    Google Scholar 

  16. D. T. Cromer, D. Liberman, J. Chem. Phys. 53:1891 (1970); D. T. Cromer, D. Liberman, Acta. Cryst. A 37:267 (1981); D. T. Cromer, J. Appl. Cryst. 16:437 (1983).

    Article  ADS  Google Scholar 

  17. B. Lengeler, Proc. of the International Conference On Anomalous Scattering, in Malente/Hamburg 1992, to be published by eds. K Fischer, G. Materlik, C. G. Sparks, Elsevier, (1993).

    Google Scholar 

  18. G. E. Ice, C. J. Sparks, Jr., Nucl. Inst. & Meth. Phys. Res. Vol.A291:110 (1990).

    Google Scholar 

  19. S. Dietrich, W. Fenzl, Phys. Rev. B 39:8873 (1989).

    Article  ADS  Google Scholar 

  20. A. Bathia, D. E. Thornton, Phys. Rev. B 2:3004 (1970).

    Article  ADS  Google Scholar 

  21. C. B. Walker, Phys. Rev. 103:547 (1956).

    Article  ADS  Google Scholar 

  22. G. E. Ice, C. J. Sparks, A. Habenschuss, L. B. Shaffer, Phys. Rev. Lett. 68:863 (1992).

    Article  ADS  Google Scholar 

  23. L. Reinhard, J. L. Robertson, S. C. Moss, G. E. Ice, P. Zschack, C. J. Sparks, Phys. Rev. B 45:2662 (1992).

    Article  ADS  Google Scholar 

  24. B. Schönfeld ibid.; B. Schönfeld et al. to be published.

    Google Scholar 

  25. W. Schweika, H. G. Haubold, Phys. Rev. B 37:9240 (1988).

    Article  ADS  Google Scholar 

  26. H. S. U. Jo, S. C. Moss, Sol. State Comm. 30:365 (1979).

    Article  ADS  Google Scholar 

  27. B. Schonfeld, S. C. Moss, K Kjaer, Phys. Rev. B 36:5466 (1987).

    Article  ADS  Google Scholar 

  28. R. Kubo, J. Phys. Soc. Jpn. 17:1100 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. W. Fenzl, S. C. Moss, J. Phys. F 17:1285 (1987).

    Article  ADS  Google Scholar 

  30. B. Borie, C. J. Sparks, Acta Cryst. A 27:198 (1971).

    Article  Google Scholar 

  31. R. O. Williams, Metall. Trans. 5:1843 (1974).

    Article  Google Scholar 

  32. C. L. Lawson, R. J. Hanson. Solving Linear Least Squares Problem, Englewood-Cliff, New Jersey, (1974).

    Google Scholar 

  33. J. E. Tibballs, J. Appl. Cryst. 8:ll (1975); P.Georgopoulos, J. B. Cohen, Journal de Physique, C7-191 (1977); P. Georgopoulos, J. B. Cohen, Acta Metall. 29:1535 (1981); X. Auvray, P. Georgopoulos, J. B. Cohen, Acta Metall. 29:1061 (1981).

    Article  Google Scholar 

  34. J. E. Gragg, Jr., J. Phys. Chem. Solids 35:717 (1974).

    Article  ADS  Google Scholar 

  35. H. Trinkaus, Phys. Stat. Sol. B 51:307 (1972).

    Article  ADS  Google Scholar 

  36. P. Dederichs, J. Phys. F 3:471 (1973).

    Article  ADS  Google Scholar 

  37. G. S. Bauer, E. Seitz, W. Just, J. Appl. Crystallogr. 8:162 (1975).

    Article  Google Scholar 

  38. T. J. Matsubara, J. Phys. Soc. Jap. 7:270 (1952).

    Article  ADS  Google Scholar 

  39. H. Kanzaki, J. Phys. Chem. Solids 2:24 (1957); H. Kanzaki, J. Phys. Chem. Solids 2:107 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  40. H. E. Cook, J. Phys. Chem. Solids 30: 1097 (1969).

    Article  ADS  Google Scholar 

  41. S. Baroni, S. de Gironcoli, P. Giannozzi, Structure and thermodynamics of SiGe alloys from computational alchemy in Structural and Phase Stability of Alloys, eds. J. L. Morán-López, F. Mejía-Lira, J. M. Sanchez, Plenum Press, New York (1992); S. de Gironcoli, P. Giannozzi, S. Baroni, Phys. Rev. Lett. 66:2116 (1991).

    Google Scholar 

  42. A. Khachaturyan, ibid.

    Google Scholar 

  43. W. Schweika, A. E. Carlsson, Phys. Rev. B 40:4990 (1989).

    Article  ADS  Google Scholar 

  44. P. C. Clapp, Phys. Rev. B 4:255 (1971).

    Article  ADS  Google Scholar 

  45. P. C. Gehlen, J. B. Cohen, Phys. Rev. 139A:844 (1965).

    Article  ADS  Google Scholar 

  46. E. Matsubara, J. B. Cohen, Acta Met. 33: 1957 (1985).

    Article  Google Scholar 

  47. R. Brout, Phase Transitions, Benjamin, New York (1965).

    Google Scholar 

  48. P. C. Clapp, S. C. Moss, Phys. Rev. 142:418 (1966).

    Article  ADS  Google Scholar 

  49. V. Gerold, J. Kern, Acta Metall. 35:393 (1987).

    Article  Google Scholar 

  50. A. Finel, F. Ducastclle, ibid.

    Google Scholar 

  51. B. Mozer, D. T. Keating, S. C. Moss, Phys. Rev. B 175:868 (1968).

    Article  ADS  Google Scholar 

  52. J. Vrijen, E. W. van Royen, D. W. Hoffman, S. Radelaar, J. de Phys. C 7:187 (1977); J. Vrijen, S. Radelaar, Phys. Rev. B17:409 (1978).

    Google Scholar 

  53. W. Wagner, R. Poerschke, A. Axmann, D. Schwann, Phys. Rev. B21:3087 (1980).

    Article  ADS  Google Scholar 

  54. This does not hold in a strict sense. For a more careful consideration see Refs. 18 and 28.

    Google Scholar 

  55. W. Schweika, Effective pair-interactions in binary alloys in Alloy Phase Stability eds. G. M. Stocks and A. Gonis, NATO ASI Series E 163, Kluwer Academic, Dordrecht (1989).

    Google Scholar 

  56. T. Hoshino, W. Schweika, R. Zeller, P. Dederichs, to appear in Phys. Rev. B (1992/1993).

    Google Scholar 

  57. F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, W. Hoving, Phys. Rev. Lett. 60:2769 (1988).

    Article  ADS  Google Scholar 

  58. S. Lefebvre, F. Bley, M. Fayard, M. Roth, Acta Metall.29:749 (1981).

    Google Scholar 

  59. S. V. Semenovskaya, Phys. Stat. SoJidi B 64:291 (1974).

    Article  Google Scholar 

  60. W. Schweika, Mat. Res. Soc. Symp. Proc. 166:249 (1990).

    Article  Google Scholar 

  61. V. Pierron-Bohnes, M. C. Cadeville, A. Finel, O. Schärpf, J. Phys. Condens. Matter. 1:247 (1991).

    Google Scholar 

  62. W. Jäger, private communication.

    Google Scholar 

  63. W. Köster, T. Gödeke, Z. Metallkde 71:765 (1980); O. Kubashewski (ed.), Iron-Binary Phase Diagrams, Springer, Berlin (1982).

    Google Scholar 

  64. S. M. Allen, J. W. Cahn, Acta Metall. 24:425 (1976).

    Article  Google Scholar 

  65. K. Binder, ibid see references therein. (possibly also in: A. Finel, ibid; G. Inden, ibid.)

    Google Scholar 

  66. B. Dünweg, K. Binder, Phys. Rev. B 36:6935 (1987).

    Article  ADS  Google Scholar 

  67. D. A. Contreras-Solorio, F. Mejía-Lira, J. L. Morán-López, J. M. Sanchez, J. de Phys. C 8:105 (1988); D. A. Contreras-Solorio, F. Mejía-Lira, J. L. Morán-López, J. M. Sanchez, Phys. Rev. B38:1148l(1988).

    Google Scholar 

  68. H. E. Stanley, in Critical Phenomena in Alloys, Magnets and Superconductors, eds. R. E. Mills, E. Ascher and R. I, Jaffee, McGraw-Hill, New York (1971).

    Google Scholar 

  69. M. E. Fisher, R. J. Burford, Phys. Rev 156:583 (1967).

    Article  ADS  Google Scholar 

  70. Here, for the correlation length the reduced temperature variable is differently defined compared to Ref. 68.

    Google Scholar 

  71. C. B. Walker, D. T. Keating, Acta Cryst. 14:1170 (1961).

    Article  Google Scholar 

  72. O. W. Dietrich, J. Als-Nielsen, Phys. Rev. 153:711 (1967).

    Article  ADS  Google Scholar 

  73. A. S. Arrott, Phys. Rev. B 31:2851 (1985).

    Article  ADS  Google Scholar 

  74. M. F ähnle, J. Souletie, J. Phys. C 17:L469 (1984); Phys. Rev. B32:3328 (1985); Phys. Stat. Sol. l38:181 (1986).

    Article  Google Scholar 

  75. C. Lamers, W. Schweika, Physica B 180 & 181:326 (1992).

    Article  ADS  Google Scholar 

  76. V. L. Ginzburg, Fiz. Tverd. Tela. 2:2031 (1960); English translation in Sov. Phys. Solid State 2:1824 (1960).

    MathSciNet  Google Scholar 

  77. W. Schweika, to be published.

    Google Scholar 

  78. P. E. A. Turchi, M. Sluiter, F. J. Pinski, D. M. Nicholson, G. M. Stocks, J. B. Staunton, Phys. Rev. Lett. 67:1779 (1991).

    Article  ADS  Google Scholar 

  79. W. Schweika, Monte Carlo simulations of order-disorder phenomena in binary alloys, in Structural and Phase Stability of Alloys,eds. J. L. Morán-López, F. Mejía-Lira, J. M. Sanchez, Plenum Press, New York (1992)

    Google Scholar 

  80. J. L. Lebowitz, M. K. Phani, D. F. Styer, J. Stat. Phys. 38:413 (1985).

    Article  ADS  Google Scholar 

  81. J. F. Fernandez, J. Oitmaa, J. Phys.C 8:1549 (1988); J. Oitmaa, J. F. Fernandez, Phys. Rev. B39:11920 (1989).

    Google Scholar 

  82. W. Münzing, N. Stump, G. Goeltz, Proc. IAEA, Symposium of Neutron Inelastic Scattering, Vienna, II:317 (1978).

    Google Scholar 

  83. D. Schwann, W. Schmatz, Acta Metall. 26:1571 (1978).

    Article  Google Scholar 

  84. P. Bardhan, H. Chen, J. B. Cohen, Phil. Mag. 35:1653 (1977).

    Article  ADS  Google Scholar 

  85. L. Remhard, B. Schönfeld, G. Kostorz, W. Bührer, Phys. Rev. B 41:1727 (1990).

    Article  ADS  Google Scholar 

  86. Ye. Z. Vintaykin, A. A. Loshmanov, Fiz. met. metalloved 27(7):754 (1967); Ye. Z. Vintaykin, G. G. Urushadze, Fiz. met. metalloved 27 (5):895 (1969).

    Google Scholar 

  87. B. Schönfeld, L. Reinhard, G. Kostorz, Phys. Stat. Solidi B 147:457 (1988).

    Article  ADS  Google Scholar 

  88. R. Caudron, M. Sarfati, M. Barrachin, A. Finel, F. Ducastelle, F. Solal, J. Phys. I France 2:1145 (1992); ibid.

    Article  Google Scholar 

  89. in collaboration with H. G. Haubold, G. E. Ice, B. Schönfeld, L. B. Shaffer, C. J. Sparks.

    Google Scholar 

  90. P. E. A. Turchi, F. J. Pinski, R. H. Howell, A. L. Wachs, M. J. Fluss, D. D. Johnson, G. M. Stocks, D. M. Nicholson, W. Schweika, Mat. Res. Soc. Symp. Proc. 166:231 (1990).

    Article  Google Scholar 

  91. Erratum: temperature scale for the calculated phase boundaries are wrong by a factor 2 in W. Schweika, H. G. Haubold, Short range order and atomic interaction in NiCr x, in Atomic Transport and Defects in Metals by Neutron Scattering, Proceedings in Physics 10, eds. C. Janot, W. Petry, D. Richter, T. Springer, Springer, Berlin (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schweika, W. (1994). Diffuse Scattering Determination of Short Range Order in Alloys. In: Turchi, P.E.A., Gonis, A. (eds) Statics and Dynamics of Alloy Phase Transformations. NATO ASI Series, vol 319. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2476-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2476-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6055-1

  • Online ISBN: 978-1-4615-2476-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics