Skip to main content

The Direct Monte Carlo Method for Calculating Alloy Phases

  • Chapter
Statics and Dynamics of Alloy Phase Transformations

Part of the book series: NATO ASI Series ((NSSB,volume 319))

  • 793 Accesses

Abstract

A number of theories exist for predicting the structure of an alloy on the assumption that the energy of the alloy can be obtained from an Ising model Hamiltonian

$${2}\sum\nolimits_{ij} {[V_{ij}^{AA} p_i^A p_j^A \, + \,V_{ij}^{BB} p_i^B p_j^B \, + \,V_{ij}^{AB} (p_i^A p_j^B + p_i^B p_j^A )]}$$
((1))

where \({p_i^A }\) is one if the atom at site i is an A atom, and zero if it is not Theorists have made efforts over the years to write the exact expression for the total energy of an alloy in the form of this Hamiltonian, 1,2,3,4 and to calculate the interatomic potentials, \({V_{ij}^{\alpha \beta } }\), from the electronic structure. The present work is based on the observation that it is not necessary to introduce interatomic potentials if the Monte Carlo (MC) method5 is used for the thermodynamics. The crux of the MC method for obtaining the equilibrium distributions of atoms in an alloy is a calculation of the energy required to replace an A atom on site i with a B atom when the configuration of the atoms on the neighboring sites, κ, is specified, \(\delta H(A \to B)\, = \,E_B (\kappa )\, - \,E_A (\kappa )\). A random number Z between zero and one is generated and the atoms at site i are interchanged only if a condition is satisfied, such as \({\rm{Z < }}\frac{1}{2}\left[ {1 - \tanh \left( {{\rm{\delta H/2}}{{\rm{k}}_{\rm{B}}}{\rm{T}}} \right)} \right]\). In the MC calculations done to date, δH is obtained from the Ising model in Eq. (1), but we calculate it directly from the electronic structure of the alloy using the embedded cluster method (ECM) of alloy theory. The ECM has reached its highest stage of development in a paper by Gonis, Butler, and Stocks,6 and is in turn based on the coherent potential approximation (CPA) for the electronic states of random substitutional alloys.7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica 128A, 334 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Gonis, X. G. Zhang, A. J. Freeman, P. Turchi, G. M. Stocks, and D. M. Nicholson, Phys. Rev. B36, 4630 (1987).

    Article  ADS  Google Scholar 

  3. H. Dreysse, A. Berera, and L. T. Wille, Phys. Rev. B39, 2442 (1989).

    Article  ADS  Google Scholar 

  4. M. Astra, C. Wolverton, D. de Fontaine, and H. Dreysse, Phys. Rev. B44, 4907 and 4914, (1991).

    Article  ADS  Google Scholar 

  5. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  6. A. Gonis, W. H. Butler, and G. M. Stocks, Phys. Rev. Lett. 50, 1482 (1983); A. Gonis, G. M. Stocks, W. H. Butler, and H. Winter, Phys. Rev. B29, 555 (1984).

    Article  ADS  Google Scholar 

  7. P. Soven, Phys. Rev. 156, 809 (1967); 178, 1136 (1969).

    Article  ADS  Google Scholar 

  8. J. S. Faulkner and G. M. Stocks, Phys. Rev. B21, 3222 (1980)}.

    Article  ADS  Google Scholar 

  9. F. Ducastelle and F. Gautier, J. Phys. F6, 2039 (1978).

    ADS  Google Scholar 

  10. M. Sluiter and P. E. A. Turchi, Phys. Rev. B40, 11215 (1989).

    Article  ADS  Google Scholar 

  11. J. Harris, Phys. Rev. B31, 1770 (1985).

    Article  ADS  Google Scholar 

  12. W. A. Shelton, D. M. Nicholson, and G. M. Stocks, MRS Symposium “Alloy Phase Stability and Design”, April 18-20, 1990, San Francisco, and to be published.

    Google Scholar 

  13. D. A. Papaconstantopoulos, “Handbook of the Band Structure of Elemental Solids”, Plenum Press, New York, 1986.

    Google Scholar 

  14. J. E. Shield and R. K. Williams, Scripta Met. 21, 1475 (1987).

    Article  Google Scholar 

  15. B. L. Gyorffy et al. in Proceedings of NATO Advanced Study Institute “Alloy Phase Stability”, Chania, Crete, Greece, June 12-27, edited by G. M. Stocks and A. Gonis (Kluwer Acacemic Publishers, The Netherlands, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faulkner, J.S., Horvath, E.A., Wang, Y., Stocks, G.M. (1994). The Direct Monte Carlo Method for Calculating Alloy Phases. In: Turchi, P.E.A., Gonis, A. (eds) Statics and Dynamics of Alloy Phase Transformations. NATO ASI Series, vol 319. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2476-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2476-2_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6055-1

  • Online ISBN: 978-1-4615-2476-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics