Skip to main content

On the Integrability of the Averaged KdV and Benney Equations

  • Chapter
Singular Limits of Dispersive Waves

Part of the book series: NATO ASI Series ((NSSB,volume 320))

Abstract

The general theory of hamiltonian systems of hydrodynamic type was developed by B.A.Dubrovin and S.P.Novikov [7],[8]. Here we study only one-dimensional hamiltonian systems possessing a complete set of Riemann invariants arising in the theory of multiphase averaging of completely integrable equations (see [2], [4], [13], [20], [32]), for example the Whitham equations (the averaged 1-phase KdV equation):

$$\begin{array}{*{20}{c}} {u_{t}^{1} = {{v}_{1}}\left( u \right)\cdot u_{x}^{1},{{v}_{1}}\left( u \right) = \frac{{{{u}^{1}} + {{u}^{2}} + {{u}^{3}}}}{3} - \frac{{2\cdot \left( {{{u}^{2}} - {{u}^{1}}} \right)\cdot K\left( s \right)}}{{3\cdot \left( {K\left( s \right) - E\left( s \right)} \right)}},} \\ {u_{t}^{2} = {{v}_{2}}\left( u \right)\cdot u_{x}^{2},{{v}_{2}}\left( u \right) = \frac{{{{u}^{1}} + {{u}^{2}} + {{u}^{3}}}}{3} - \frac{{2\cdot \left( {{{u}^{2}} - {{u}^{1}}} \right)\cdot \left( {1 - {{s}^{2}}} \right)\cdot K\left( s \right)}}{{3\cdot \left( {E\left( s \right) - \left( {1 - {{s}^{2}}} \right)\cdot K\left( s \right)} \right)}},} \\ {u_{t}^{3} = {{v}_{3}}\left( u \right)\cdot u_{x}^{3},{{v}_{3}}\left( u \right) = \frac{{{{u}^{1}} + {{u}^{2}} + {{u}^{3}}}}{3} + \frac{{2\cdot \left( {{{u}^{3}} - {{u}^{1}}} \right)\cdot \left( {1 - {{s}^{2}}} \right)\cdot K\left( s \right)}}{{3\cdot E\left( s \right)}},} \\ \end{array}$$
(1)

(here s 2=(u 2-u 1)/(u 3-u 1)); E(s), K(s) are the complete ellipticintegrals and Benney equations:

$$\begin{array}{*{20}{c}} {h_{t}^{i} + {{{\left( {{{q}^{i}}\cdot {{h}^{i}}} \right)}}_{x}} = 0,i = 1, \ldots ,N,} \\ {q_{t}^{i} + {{q}^{i}}\cdot q_{x}^{i} + {{S}_{x}} = 0,S = {{h}^{1}} + + {{h}^{N}}} \\ \end{array}$$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Bianchi, Opere, v.3: Sisteme tripli ortogonali, Ed. Cremonese, Roma(1955)

    Google Scholar 

  2. R.F. Bikbaev, V.Yu. Novokshenov, Self-similar solutions of the Whitham equations and the Korteweg-de vries equation with finiite-gap boundary condition, Proc 3 Intern. Workshop “Nonlinear and turbulent processes in physics”, Kiev, v.1, p. 32 (1987).

    Google Scholar 

  3. K.M. Case, S.C. Chiu, Bäcklund transformation for thr resonant three-wave process, Phys. Fluids, 20, p. 768 (1977).

    MathSciNet  Google Scholar 

  4. L. Chierchia, N. Ercolani, D.W. McLauhglin, On the weak limit of rapidly oscillating waves, Duke Math. J., 55, p. 759 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Curro, D. Fusco, On a class of quasilinear hyperbolic reducible systems allowing for special wave interactions, Zeitschr. Angew. Math. and Physik, 38, p.580 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Darboux, Leçons sur les systémes orthogonaux et les coordonnées curvilignes, Paris (1910).

    MATH  Google Scholar 

  7. B.A. Dubrovin, S.P. Novikov, Hydrodynamical formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method, Soviet Math. Doklady, 27, p. 665 (1983).

    MATH  Google Scholar 

  8. B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and hamiltonian theory, Russ. Math.Surveys, 44, p. 35 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. B.A. Dubrovin, On the differential geometry of strongly integrable systems of hydrodynamic type, Funk. Anal., 24 (1990).

    Google Scholar 

  10. B.A. Dubrovin, The differential geometry of moduli space and its applications to soliton equations and to the topological conformal field theory, Preprint Univ. Napoli, 1991.

    Google Scholar 

  11. D. Th. Egorov, Collected papers on differential geometry,Nauka, Moscow (1970).

    Google Scholar 

  12. E.V. Ferapontov, Integration of the weakly nonlinear semihamiltonian systems of hydrodynamic type with the web theory methods, Mat. Sbornik, 181, p. 1220 (1990).

    Google Scholar 

  13. H. Flaschka, M.G. Forest, D.W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation, Comm. Pure Appl. Math., 33, p. 739 (1980).

    Article  ADS  MATH  Google Scholar 

  14. J. Gibbons, Collisionless Boltzmann equations and integrable moment equations, Physica D, 3, p. 503 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H. Gümral, Y. Nutku, Hamiltonian structure of equations of hydrodynamic type, J. Math. Phys., 31, p. 2606 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Y. Kodama, J. Gibbons, Integrability of the dispersionless KP hierarchy, Proc Intern. Workshop “Nonlinear and turbulent processes in physics”, Kiev, 1989.

    Google Scholar 

  17. I.M. Krichever, Spectral theory of two-dimensional periodic operators and its applications, Russian Math. Surveys, 44, #2 (1989).

    Google Scholar 

  18. V.R. Kudashev, S.E. Sharapov, The inheritance of KdV symmetries under Whitham averaging and hydrodynamic symmetries for the Whitham equations, Theor. Math. Phys., 87, p. 40 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. V.R. Kudashev, S.E. Sharapov, Hydrodynamic symmetries for the Whitham equations for the nonlinear Schrödinger equation (NSE), Phys. Lett A, 154, p.445 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  20. C.D. Levermore, The hyperbolic nature of the zero dispersion KdV limit, Comm. Partial Diff. Eq., 13, p. 495 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Magri, A simple model of the integrable hamiltonian system, J. Math. Phys., 19, p. 1156 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. O.I. Mokhov, E.V. Ferapontov, On the nonlocal hamiltonian operators of hydrodynamic type connected with constant-curvature metrics, Russian Math. Surveys, 45 (1991).

    Google Scholar 

  23. M.V. Pavlov, Hamiltonian formalism of electrophoresis equations, ITPh preprint, Chernogolovka, 1987.

    Google Scholar 

  24. M.V. Pavlov, S.P. Tsarev, On the conservation laws for Benney equations, Russian Math. Surveys, 45 (1991).

    Google Scholar 

  25. D. Serre, Systèmes d’EDO invariants sous l’action de systèmes hyperboliques d’EDO, Ann. Inst. Fourier, 39, p. 953 (1989).

    Article  MATH  Google Scholar 

  26. D. Serre, Intégrabilité d’une classe de systèmes de lois de conservation, Preprint ENS Lyon, #45 (1991).

    Google Scholar 

  27. M.B. Sheftel, On the integration of the hamiltonian systems of hydrodynamic type with two dependent variables with the help of a Lie-Bäcklund group, Funk. Anal., 20 (1986).

    Google Scholar 

  28. V.M. Teshukov, Hyperbolic systems admitting a nontrivial Lie-Bäcklund group, Preprint LIIAN, Leningrad, 1989.

    Google Scholar 

  29. S.P. Tsarev, On Poisson brackets and one-dimensional systems of hydrodynamic type, Soviet Math. Doklady, 31, p. 488 (1985).

    MATH  Google Scholar 

  30. S.P. Tsarev, Geometry of hamiltonian systems of hydrodynamic type. Generalized hodograph method, Math. in USSR Izvestiya, 36 (1991).

    Google Scholar 

  31. J. Verosky, Higher-order symmetries of the compressible one-dimensional isentropic fluid equations, J. Math. Phys., 25, p. 884 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. G.B. Whitham, Linear and nonlinear waves, N.Y., John Wiley (1974).

    MATH  Google Scholar 

  33. V.E. Zakharov, Benney equations and the quasiclassical approximation in the inverse spectral problem method, Funk. Anal., 14 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsarev, S.P. (1994). On the Integrability of the Averaged KdV and Benney Equations. In: Ercolani, N.M., Gabitov, I.R., Levermore, C.D., Serre, D. (eds) Singular Limits of Dispersive Waves. NATO ASI Series, vol 320. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2474-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2474-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6054-4

  • Online ISBN: 978-1-4615-2474-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics