Membrane Cholesterol and Ethanol: Domains, Kinetics, and Protein Function

  • W. Gibson Wood
  • A. Muralikrishna Rao
  • Friedhelm Schroeder
  • Urule Igbavboa


Approximately 15 years ago, Chin and Goldstein (1977) published a study that was the stimulus for a major effort towards understanding the mechanisms involved in cellular tolerance to ethanol. They had shown that membranes of ethanol-tolerant mice were resistant to the fluidizing effects of ethanol in vitro. This finding has been replicated in several different laboratories using different techniques and different types of membranes (Crews et al., 1983; Harris et al., 1984; Waring et al., 1982; Rottenberg et al., 1981; Ponnappa et al., 1982; Kelly-Murphy et al., 1983; Taraschi et al., 1986; Taraschi et al., 1990; Wood et al., 1989b). Resistance to ethanol-induced fluidization has also been reported in erythrocyte membranes of alcoholics patients (Beauge et al., 1985; Wood et al., 1987).


Chronic Ethanol Membrane Cholesterol Small Unilamellar Vesicle Synaptosomal Membrane Synaptic Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aepfelbacher, M., N. Hrboticky, I. Lux and P.C. Weber, 1991, Cholesterol modulates PAF-stimulated Ca2+-mobilization in monocytic U937 cells, Biocnim Biophys Acta 1074, 125.CrossRefGoogle Scholar
  2. Artigues, A., M.T. Villar, A.M. Fernandez, J.A. Ferragut and J.M. Gonzalaez-Ros, 1989, Cholesterol stabilizes the structure of the nicotinic acetylcholine receptor reconstituted in lipid vesicles, Biochim Biophys Acta 985, 325.CrossRefGoogle Scholar
  3. Bar, L.K., Y. Barenholz and T.E. Thompson, 1987, Dependence on phospholipid composition of the fraction of cholesterol undergoing spontaneous exchange between small unilamellar vesicles, Biochem. 26, 5460.CrossRefGoogle Scholar
  4. Bass, N.M., D.E. Raghupathy, D.E. Rhoads, J.A. Manning and R.K. Ockner, 1984, Partial purification of molecular weight 12000 fatty acid binding proteins from rat brain and their effect on synaptosomal Na+-dependent amino acid uptake, Biochem. 23, 6539.CrossRefGoogle Scholar
  5. Beauge, F., H. Stibler and S. Borg, 1985, Abnormal fluidity and surface carbohydrate content of erythrocyte membrane in alcoholic patients, Alcohol Clin Exp Res 9, 322.PubMedCrossRefGoogle Scholar
  6. Berstein, G., T. Haga and A. Ichiyama, 1989, Effect of the lipid environment on the differential affinity of purified cerebral and atrial muscarinic acetylcholine receptors for pirenzepine, Mol. Pharmacol. 36, 601.Google Scholar
  7. Bittman, R., S. Clejan and S.W. Hui, 1990, Increased rates of lipid exchange between Mycoplasma capricolum membranes and vesicles in relation to the propensity of forming nonbilayer lipid structures, J. Biol. Chem. 265 (25), 15110.PubMedGoogle Scholar
  8. Bloj, B. and D.B. Zilversmit, 1977, Complete exchangeability of cholesterol in phosphatidylcholine/cbolesterol vesicles of different degrees of unsaturation, Biochem. 16, 3943.CrossRefGoogle Scholar
  9. Brasaemle, D.L., A.D. Robertson and A.D. Attie, 1988, Transbilayer movement of cholesterol in the human erythrocyte membrane, J. Lipid Res. 29, 481.PubMedGoogle Scholar
  10. Butko, P., I. Hapala, T.J. Scallen and F. Schroeder, 1990, Acidic phospholipids strikingly potentiate sterol carrier protein 2 mediated intermembrane sterol transfer, Biochem. 29, 4070.CrossRefGoogle Scholar
  11. Chin, J.H., L.M. Parsons and D.B. Goldstein, 1978, Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice, Biochim Biophys Acta 513, 358.PubMedCrossRefGoogle Scholar
  12. Chin, J.H. and D.B. Goldstein, 1977, Drug tolerance in biomembranes: a spin label study of the effects of ethanol, Science 196, 684.PubMedCrossRefGoogle Scholar
  13. Chin, J.H. and D.B. Goldstein, 1981, Membrane-disordering action of ethanol. Variation with membrane cholesterol content and depth of the spin label probe, Mol. Pharmacol. 19, 425.Google Scholar
  14. Chin, J.H. and D.B. Goldstein, 1984, Cholesterol blocks the disordering effects of ethanol in biomembranes, Lipids 19 (12), 929.PubMedCrossRefGoogle Scholar
  15. Clejan, S. and R. Bittman, 1984, Decreases in rates of lipid exchange between Mycoplasma gallisepticum cells and unilamellar vesicles by incorporation of sphingomyelin, J. Biol. Chem. 259, 10823.PubMedGoogle Scholar
  16. Crews, F.T., E. Majchrowicz and R. Meeks, 1983, Changes in cortical synaptosomal plasma membrane fluidity and composition in ethanol dependent rats, Psychopharm 81, 208.CrossRefGoogle Scholar
  17. Curtain, C.C., L.M. Gordon and R.C. Aloia, 1988, lipid domains in biological membranes: Conceptual Development and Significance, in: Lipid Domains and the Relationship to Membrane Function, eds. R.C. Aloia, C.C. Curtain and L.M. Gordon (Alan R. Liss, New York ) p. 1.Google Scholar
  18. Daniel, L.C., E.P. Brass and R.A. Harris, 1987, Effect of ethanol on intracellular ionized calcium concentrations in synaptosomes and hepatocytes, Mol. Pharmacol. 32, 831.Google Scholar
  19. Daniell, L.C. and R.A. Harris, 1988, Effect of chronic ethanol treatment and selective breeding for hypnotic sensitivity to ethanol on intracellular ionized calcium concentrations in synaptosomes, Alcohol Clin Exp Res 12, 179.PubMedCrossRefGoogle Scholar
  20. Daniels, C.K. and D.B. Goldstein, 1982, Movement of free cholesterol from lipoproteins or lipid vesicles into erythrocytes, Mol. Pharmacol. 21, 694.Google Scholar
  21. Deitrich, R.A., T.V. Dunwiddie, R.A. Harris and V.G. Erwin, 1989, Mechanism of action of ethanol: Initial central nervous system actions, Pharmacol Rev 41, 489.PubMedGoogle Scholar
  22. Devaux, P.F., 1988, Phospholipid flippases, FEBS Lett 234 (1), 8.PubMedCrossRefGoogle Scholar
  23. Devaux, P.F., 1991, Static and dynamic lipid asymmetry in cell membranes, Biochem. 30, 1163.CrossRefGoogle Scholar
  24. Doyle, K., J. Cluette-Brown, F. Igoe and J. Hojnacki, 1986, Ethanol induced alterations in erythrocyte membrane lipids due to enhanced cholesterol influx, Res Comm Sub Abuse 7, 133.Google Scholar
  25. Doyle, K., J. Cluette-Brown, N. Rencricca and J. Hojnacki, 1988, Ethanol induced alterations in red blood cell membrane lipid composition due to decreased cholesterol efflux, Res Comm Sub Abuse 9, 157.Google Scholar
  26. Floreani, M., P. Debetto and F. Carpenedo, 1991, Phosphatidylserine vesicles increase Ca2+ uptake by rat synaptosomes, Arch. Biochem. Biophys. 285, 116.CrossRefGoogle Scholar
  27. Fontaine, R.N., R.A. Harris and F. Schroeder, 1980, Aminopbospholipid asymmetry in murine synaptosomal plasma membrane, J. Neurochem 34, 269.PubMedCrossRefGoogle Scholar
  28. Gold, J.C. and M.C. Phillips, 1990, Effects of membrane lipid composition on the kinetics of cholesterol exchange between lipoproteins and different species of red blood cells, Biochim Biophys Acta 1027, 85.Google Scholar
  29. Hapala, I., P. Butko and F. Schroeder, 1990, Role of acidic phospholipids in intermembrane sterol transfer, Chem Phys Lipids 56, 37.PubMedCrossRefGoogle Scholar
  30. Harris, R.A., D.M. Baxter, M.A. Mitchell and R.J. Hitzemann, 1984, Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice, Mol. Pharmacol. 25, 401.Google Scholar
  31. Hill, M.W. and A.D. Bangham, 1975, General depressant drug dependency: A biophysical hypothesis, Adv. Exp. Med. Biol. 59, 1.PubMedGoogle Scholar
  32. Hunt, W.A., 1985, Alcohol and Biological Membranes ( The Guilford Press, New York).Google Scholar
  33. Incerpi, S., J.R. Jefferson, W.G. Wood, W.J. Ball and F. Schroeder, 1992, Na pump and plasma membrane structure in L-cell fibroblasts expressing rat liver fatty acid binding protein, Arch. Biochem. Biophys. 298, 35.CrossRefGoogle Scholar
  34. Jefferson, J.R., J.P. Slotte, G. Nemecz, A. Pastuszyn, T.J. Scallen and F. Schroetter, 1991, Intracellular sterol distribution in transfected mouse L-cell fibroblasts expressing rat liver fatty acid-binding protein, J. Biol. Chem. 266, 5486.PubMedGoogle Scholar
  35. Kanner, B.I. and A. Shouffani, 1990, Cholesterol is required for reconstitution of the sodium- and chloride-coupled, GAMMA-aminobutyric acid trasponer from rat brain, J. Biol. Chem. 265 (11), 6002.PubMedGoogle Scholar
  36. Kelly-Murphy, S., A.J. Waring, H. Rottenberg and E. Rubin, 1983, Effects of chronic ethanol consumption on the partition of lipophilic compounds into erythrocyte membranes, Lab. Invest 50, 174.Google Scholar
  37. Kier, A.B., W.D. Sweet, M.S. Cowlen and F. Schroeder, 1986, Regulation of transbilayer distribution of a fluorescent sterol in tumor cell plasma membranes, Biochim Biophys Acta 861, 287.PubMedGoogle Scholar
  38. Locher, R., L. Neyses, M. Stimpel, B. Kuffer and W. Vetter, 1984, The cholesterol content of the human erythrocyte influences calcium influx through the channel, Biochem. Biophys. Res. Commun. 124, 822.CrossRefGoogle Scholar
  39. Madden, T.D., M.D. King and P.J. Quinn, 1981, The modulation of Ca2+-ATPase activity of sarcoplasmic reticulim by membrane cholesterol: The effect of enzyme coupling, Biochim Biophys Acta 641, 265.PubMedCrossRefGoogle Scholar
  40. Maguire, P.A. and M.J. Druse, 1989a, The influence of cholesterol on synaptic fluidity, dopamine D1 binding and dopamine-stimulated adenylate cyclase, Brain Res. Bull. 23, 69.Google Scholar
  41. Maguire, P.A. and M.J. Druse, 1989b, The influences of cholesterol on synaptic fluidity and dopamine uptake, Brain Res. Bull. 22, 431.Google Scholar
  42. McLean, L. and M.C. Phillips, 1982, Cholesterol desorption from clusters of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer or exchange, Biochem. 21, 4053.CrossRefGoogle Scholar
  43. McMurchie, E.J. and G.S. Patten, 1988, Dietary cholesterol influences cardiac BETA-adrenergic receptor adenylate cyclase activity in the marmoset monkey by changes in membrane cholesterol status, Biochim Biophys Acta 942, 324.PubMedCrossRefGoogle Scholar
  44. Michelangeli, F., J.M. East and A.G. Lee, 1990, Structural effects on the interaction of sterols with the (Ca2+ + Mg2+)-ATPase, Biochim Biophys Acta 1025, 99.PubMedCrossRefGoogle Scholar
  45. Moring, J., W.J. Shoemaker, V. Skita, R.P. Mason, H.C. Hayden, R.M. Salomon and L.G. Herbette, 1990, Rat cerebral cortical synaptoneurosomal membranes structure and interactions with imidazobenzodiazepine and 1,4-dihydropyridine calcium channel drugs, Biophys J 58, 513.PubMedCrossRefGoogle Scholar
  46. Nemecz, G., R.N. Fontaine and F. Schroeder, 1988, A fluorescence and radiolabel study of sterol exchange between membranes, Biochim Biophys Acta 943, 511.PubMedCrossRefGoogle Scholar
  47. Op den Kamp, J.A.F., 1979, Lipid asymmetry in membranes, Annu. Rev. Biochem. 48, 47.CrossRefGoogle Scholar
  48. Parsons, L.M., E.J. Gallaher and D.B. Goldstein, 1982, Rapidly developing functional tolerance to ethanol is accompanied by increased erythrocyte cholesterol in mice, J Pharmacol Exp Ther 223 (2), 472.PubMedGoogle Scholar
  49. Phillips, M.C., W.J. Johnson and G.H. Rothblat, 1987, Mechanisms and consequences of cellular cholesterol exchange and transfer, Biochim Biophys Acta 906, 223.PubMedCrossRefGoogle Scholar
  50. Pignon, J., N.C. Bailey, E. Baraona and C.S. Lieber, 1987, Fatty acid-binding protein: a major contributor to the ethanol-induced increase in liver cytosolic proteins in the rat, Hepatology 7 (5), 865.PubMedCrossRefGoogle Scholar
  51. Ponnappa, B.C., A.J. Waring, J.B. Hoek, H. Rottenberg and E. Rubin, 1982, Chronic ethanol ingestion increases calcium uptake and resistance to molecular disordering by ethanol in liver microsomes, J. Biol. Chem. 257, 10141.PubMedGoogle Scholar
  52. Porn, M.I., J. Tenhunen and LP. Slotte, 1991, Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation, Biochim Biophys Acta 1093, 7.Google Scholar
  53. Poznansky, M.J. and Y. Lange, 1976, Transbilayer movement of cholesterol in dipalmitoyl-lecithin-cholesterol vesicles, Nature 259, 420.PubMedCrossRefGoogle Scholar
  54. Poznansky, M.J. and Y. Lange, 1976, Transbilayer movement of cholesterol in dipalmitoyl-lecithin-cholesterol vesicles, Nature 259, 420.PubMedCrossRefGoogle Scholar
  55. Roelofsen, B., 1982, Phospholipases as tools to study the localization of phospholipids in biological membranes. A critical review, J. Toxicol. 1 (1), 87.Google Scholar
  56. Rottenberg, H., A. Waring and E. Rubin, 1981, Tolerance and cross-tolerance in chronic alcoholics: Reduced membrane binding of ethanol and other drugs, Science 213, 583.PubMedCrossRefGoogle Scholar
  57. Sastry, P.S., 1985, Lipids of nervous tissue: composition and metabolism, Prog. Lipid Res. 24, 69.CrossRefGoogle Scholar
  58. Schachter, D., R.E. Abbott, U. Cogan and M. Flamm, 1983, Lipid fluidity of the individual hemileaflets of human erythrocyte membranes, Ann NY Acad Sci 414, 19.PubMedCrossRefGoogle Scholar
  59. Schoentgen, F., G. Pignede, L.M. Bonanno and P. Jolles, 1989, Fatty acid-binding protein from bovine brain, Eur. J. Biochem. 185, 35.PubMedCrossRefGoogle Scholar
  60. Schroeder, F., W.J. Morrison, C. Gorka and W.G. Wood, 1988, Transbilayer effects of ethanol on fluidity of brain membrane leaflets, Biochim Biophys Acta 946, 85.PubMedCrossRefGoogle Scholar
  61. Schroeder, F., W.G. Wood, W.J. Morrison, R.N. Fontaine and A.B. Keir, 1989, Synaptosomal plasma membrane lipid and structural asymmetry, in: Neurochemical Aspects of Phospholipid Metabolism, eds. L. Freysz, J.N. Hawthorne and G. Toffano ( Liviana Press, Padova, Italy ) p. 17.Google Scholar
  62. Schroeder, F., J.R. Jefferson, A.B. Kier, J. Knittel, TJ. Scallen, W.G. Wood and I. Hapala, 1991a, Membrane cholesterol dynamics: Cholesterol domains and kinetic pools, Proc. Soc. Exp. Bio. Med. 196, 235.Google Scholar
  63. Schroeder, F., G. Nemecz, W.G. Wood, G. Morrot, M. Ayraut-Jarrier and P.F. Devaux, 1991b, Transmembrane distribution of sterol in the human erythrocyte, Biochim Biophys Acta 1066, 183.Google Scholar
  64. Slotte, J.P., G. Hedstrom, S. Rannstrom and S. Ekman, 1989, Effects of sphingomyelin degradation on cell cholesterol oxidizability and steady-state distribution between the cell surface and the cell interior, Biochim Biophys Acta 985, 90.PubMedCrossRefGoogle Scholar
  65. Slotte, J.P. and E.L. Bierman, 1988, Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts, Biochem J 250, 653.PubMedGoogle Scholar
  66. Stubbs, C. D., B.W. Williams, C.L. Pryor and E. Rubin, 1988, Ethanol-induced modifications to membrane lipid structure: effect of phospholipid A2-membrane interactions, Arch. Biochem. Biophys. 262, 560.CrossRefGoogle Scholar
  67. Sun, G.Y. and A.Y. Sun, 1985, Ethanol and membrane lipids, Alcohol Clin Exp Res 9 (2), 164.PubMedCrossRefGoogle Scholar
  68. Supernovich, C., R. Crain and P. Rosenberg, 1991a, Phosphatidylcholine asymmetry in electroplax from the electric eel: Use of a phosphatidylcholine exchange protein, J. Neurochem 57, 575.PubMedCrossRefGoogle Scholar
  69. Supernovich, C., R. Crain and P. Rosenberg, 1991b, Effect of soman and sarin on phosphatidylcholine asymmetry in the electroplax from the electric eel, J. Neurochem 57, 585.PubMedCrossRefGoogle Scholar
  70. Sweet, W.D., W.G. Wood and F. Schroeder, 1987, Charged anesthetics selectively alter plasma membrane order, Biochem. 26, 2828.CrossRefGoogle Scholar
  71. Taraschi, T.F., J.S. Ellingson, A. Wu, R. Zimmerman and E. Rubin, 1986, Phosphatidylinositol from ethanol-fed rats confers membrane tolerance to ethanol, Proc. Natl. Acad. Sci. U. S. A. 83, 9398.PubMedCrossRefGoogle Scholar
  72. Taraschi, T.F., J.S. Ellingson, A. Wu-Sun and E. Rubin, 1990, Rats withdrawn from ethanol rapidly re-acquire membrane tolerance after resumption of ethanol feeding, Biochim Biophys Acta 1021, 51.Google Scholar
  73. Thomas, P.D. and M.J. Poznansky, 1988, Cholesterol transfer between lipid vesicles, effect of phospholipids and gangliosides, Biochem J 251, 55.PubMedGoogle Scholar
  74. Thurnhofer, H. and H. Hauser, 1990, Uptake of cholesterol by small intestinal brash border membrane is protein-mediated, Biochem. 29, 2142.CrossRefGoogle Scholar
  75. Veerkamp, J.H., R.A. Peeters and R.G.H.J. Maatman, 1991, Structural and functional features of different types of cytoplasmic fatty-acid-binding proteins, Biochim Biophys Acta 1081, 1.Google Scholar
  76. Waring, A.J., H. Rottenberg, T. Ohnishi and E. Rubin, 1982, The effect of chronic ethanol consumption on temperature-dependent physical properties of liver mitochondrial membranes, Arch. Biochem. Biophys. 216, 51.CrossRefGoogle Scholar
  77. Wood, W.G., S. Lahiri, C. Gorka, H.J. Armbrecht and R. Strong, 1987, In vitro effects of ethanol on erythrocyte membrane fluidity of alcoholic patients: An electron spin resonance study, Alcohol Clin Exp Res 11, 332.PubMedCrossRefGoogle Scholar
  78. Wood, W.G., M. Cornwell and L.S. Williamson, 1989a, High performance thin-layer chromatography and densitometry of synaptic plasma membrane lipids, J. lipid Res. 30, 775.PubMedGoogle Scholar
  79. Wood, W.G., C. Gorka and F. Schroeder, 1989b, Acute and chronic effects of ethanol on transbilayer membrane domains, J. Neurochem 52, 1925.PubMedCrossRefGoogle Scholar
  80. Wood, W.G., F. Schroeder, L. Hogy, A.M. Rao and G. Nemecz, 1990, Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: Effects of chronic ethanol consumption, Biochim Biophys Acta 1025, 243.Google Scholar
  81. Wood, W.G., C. Gorka, J.A. Johnson, G.Y. Sun, A.Y. Sun and F. Schroeder, 1991a, Chronic ethanol consumption alters transbilayer distribution of phosphatidylcholine in erythrocytes of Sinclair (S-1) Miniature Swine, Alcohol 8, 395.PubMedCrossRefGoogle Scholar
  82. Wood, W.G., F. Schroeder and A.M. Rao, 1991b, Significance of ethanol-induced changes in membrane lipid domains, Alc. & Alcohol. Suppl. 1, 221.Google Scholar
  83. Wood, W.G., A.M. Rao, U. Igbavboa and M. Semotuk, 1993, Cholesterol exchange and lateral cholesterol pools in synaptosomal membranes of pair-fed control and chronic ethanol-treated mice, Alcohol Clin Exp Res, 17, 345.PubMedCrossRefGoogle Scholar
  84. Wood, W.G. and F. Schroeder, 1988, Membrane effects of ethanol: Bulk lipid versus lipid domains, life Sci 43, 467.PubMedCrossRefGoogle Scholar
  85. Wood, W.G. and F. Schroeder, 1992, Membrane exofacial and cytofacial leaflets: A new approach to understanding how ethanol alters brain membranes, in: Alcohol and Neurobiology: Receptors, Membranes, and Channels, ed. R.R. Watson (CRC Press, Boca Raton, FL ) p. 161.Google Scholar
  86. Yang, J., G.L. Anderle and R. Mendelsohn, 1990, Effects of cholesterol on the interaction of Ca2+-ATPase with 1-palmitoyl-2-oleoylphosphatidylethanolamine. An FTIR study, Biochim Biophys Acta 1021, 27.Google Scholar
  87. Yeagle, P.L., 1983, Cholesterol modulation of (Na++K+)-ATPase ATP hydrolyzing activity in the human erythrocyte, Biochim Biophys Acta 729, 39.Google Scholar
  88. Yeagle, P.L., 1989, Lipid regulation of cell membrane structure and function, FASEB J. 3, 1833.PubMedGoogle Scholar
  89. Zhou, Q., S. Jimi, T.L. Smith and F.A. Kummerow, 1991, The effect of cholesterol on the accumulation of intracellular calcium, Biochim Biophys Acta 1085, 1.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • W. Gibson Wood
    • 1
  • A. Muralikrishna Rao
    • 1
  • Friedhelm Schroeder
    • 2
  • Urule Igbavboa
    • 1
  1. 1.Geriatric Research, Education and Clinical Center VA Medical Center, and Department of PharmacologyUniversity of Minnesota School of MedicineMinneapolisUSA
  2. 2.Department of Pharmacology and Cell BiophysicsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations